
Third Edition

JACL Interpreter v2.0
http://sourceforge.net/projects/jacl

JACL Interpreter copyright 1992-2008 Stuart Allen
Please send any bugs or feature requests to stuart@animats.net

Preprocessor code copyright 2001-2002 Andreas Matthias

Internationalisation by Niels Haedecke

Glk libraries by Andrew Plotkin, David Kinder and Tor Andersson.

Special thanks to Robert Osztolykan, Parham Doustdar, Jose Lacal and Eric Forgeot for their testing and
editing.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to
the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Table of Contents
Introduction...1

Typographical Conventions...3

Installation...5
Compilation...5
Playing the Sample Games..6

Playing Interactive Fiction...9
Moving Around..9
Manipulating Objects...9
Interacting with Characters..11
Meta Commands..12

Tutorial Game...13
Language Syntax..13
Program Structure..13
Getting Started...14
Locations..14
The Player..17
Some Introductory Text...19
Objects...20
Verbs and Functions..22
Overriding Functions...23
Doors..24
Non-player Characters...28
The Passing of Time..30
Winning and Losing the Game..31

Testing, Debugging and Releasing...35
The WALKTHRU Command..35
Transcripts..36

The Debug Library ...37
The INSPECT Command..37
The Verb VALUEOF...37
The Verb FETCH...38

Releasing Your Game...39

Screen Display...41
The WRITE Command..41

Special Characters...42
Printing the Value of Variables...42
Printing the Value of Item Elements...42
Printing the Names and Descriptions of Objects...43
Sentences Referring to Varying Objects...43
Printing the Value of Strings...44

The JACL Author's Guide

i

Table of Contents
Screen Display

The PRINT Command...45
The LOOK Command..45
The MORE Command...46

Glk and Multimedia..47
Blorb Files and the bjorb Utility..47
The IMAGE Command..49
The SOUND Command...49
The VOLUME Command..50
The STOP Command...50
The TIMER Command..50
The STYLE Command..51
The Status Window..51
The UPDATESTATUS Command..54

Flow Control..55
The IF, IFALL and ENDIF Commands...55
The IFSTRING Command...56
The IFEXECUTE Command...57
The ELSE Command...57
The LOOP and ENDLOOP Commands..58
The REPEAT and UNTIL Commands..59
The WHILE and ENDWHILE Commands...60
The RETURN Command...60

Changing Data...61
The SET Command...61
Type Casting..62
The SETSTRING and ADDSTRING Commands...63
The PADSTRING Command..63

Movement..65
The MOVE Command...65
The TRAVEL Command...65
Moving Non-player Characters..67
The DIR_TO and NPC_TO Commands..67

Special-Purpose Commands..69
The POINTS Command...69
The PROXY Command...69
Trigonometry...70
The POSITION Command..70
The BEARING Command...70
The DISTANCE Command...71
The ASKNUMBER AND GETNUMBER Commands..71
The GETSTRING Command..71
The GETYESORNO Command..72

The JACL Author's Guide

ii

Table of Contents
Special-Purpose Commands

The SAVEGAME and RESTOREGAME Commands..72
The ENDGAME Command...73
The TERMINATE Command..73
The UNDOMOVE Command...73

Attributes...75
The ENSURE Command...75
Object Attributes..75
Location Attributes..76
User Attributes...77

Functions..79
The EXECUTE and CALL Commands...79

Passing Arguments to a Function..81
The function-call count..82
The RETURN Command...83
Responding to the Player's Moves...83
Special Functions...86
Utility Functions..87

Creating New Verbs..89

Pointers..93
Object Pointers...93
Location Pointers...93

Object Resolution..95
Object Naming...95
Disambiguation..96

Definitions in Detail..99
Objects...99
Locations..102
Integer Variables..104
Internal Integer Variables..105
String Variables...106
Arrays...106
Constants..107
Synonyms...107
Filters...108
Grammar Statements..108
User Attributes...110

Internals...111
Constants and Random..111
Internal Commands..111

The JACL Author's Guide

iii

Table of Contents
The Menu Library ..113

Appendix A: JACL Attributes...115

Appendix B: Library Verb Functions...117

Appendix C: Tutorial Game Source Code..121

Glossary...127

The JACL Author's Guide

iv

Introduction
JACL is a language for writing interactive fiction, also known as text adventure games. It is easy to learn and
comes with an extensive library of game verbs that will allow you to create the beginnings of your first game
quickly and easily. The tutorial chapter of this guide walks you through the creation of a simple, but complete
text adventure game and demonstrates all the main principles of the JACL language.

JACL is an interpreted language, so once you have written your games they can be run without modification
on any platform that has a JACL interpreter. The JACL interpreter uses the Glk API to talk to its user
interface which allows it to be compiled with many different Glk implementations on many different
operating systems. Although interactive fiction is primarily a text-based medium, many of these Glk interfaces
allow you to also fill your games with pictures and sound.

The latest version of JACL can be found at http://sourceforge.net/projects/jacl/ while the JACL forum is at
http://jacl.game-host.org:8080/punbb/viewforum.php?id=2.

I would also like to take this opportunity to thank some of the people who have contributed to this system:
Robert Osztolykan and Parham Doustdar for their invaluable beta testing, editing and suggestions; Andreas
Matthias for contributing the preprocessor code; David Fisher for contributing the route-finding code; Niels
Haedecke for his work on translation and internationalisation; Andrew Plotkin, David Kinder and Tor
Andersson for their Glk libraries.

Stuart Allen
Sydney, Australia July 2008

stuart@animats.net

Introduction 1

The JACL Author's Guide

2 Introduction

Typographical Conventions
The use of bold indicates that this word is used verbatim in the appropriate manner.

The use of italics indicates text that should be substituted with the appropriate value.

The use of typewriter font indicates code segments, typed commands or transcripts.

Underlined text is occasionally used for emphasis.

Text enclosed in square brackets, [such as this], indicates an optional parameter.

The warning graphic indicates a potential area for error. Special care should be taken
when working in these areas.

The information graphic indicates advanced, non-essential information that may confuse
the novice author. These may be safely skipped until you have a greater level of
experience.

Typographical Conventions 3

The JACL Author's Guide

4 Typographical Conventions

Installation
The latest version of JACL can be found at http://jacl.sourceforge.net/download.html. JACL is available as a
zip file for Microsoft Windows and tar file for Unix operating systems. Once you have extracted the
appropriate archive you will have a directory called jacl-2.x with several subdirectories. You will find the
executable files in the bin subdirectory. In Microsoft Windows distributions you will find three interpreters
jacl, winjacl and garjacl. The first uses GlkTerm by Andrew Plotkin, the second WindowsGlk by David
Kinder and the third uses Gargoyle by Tor Andersson. You will also find the program bjorb, a small utility
(based on blc by Ross Raszewski) for creating the Blorb resource files that will contain any images and
sounds you wish to use in your games. In Linux distributions you will find the two interpreters jacl and
garjacl. The first uses GlkTerm by Andrew Plotkin while the second uses Gargoyle by Tor Andersson. You
will also find the same bjorb utility as in the Windows version.

Compilation

The src directory contains the C source code to the JACL interpreter. Also included is the source to glkterm a
Glk implementation by Andrew Plotkin based on ncurses, and the bjorb utility .

 Interpreter Required Libraries

jacl
GlkTerm by Andrew Plotkin (included) and Ncurses, available from
http://ftp.gnu.org/pub/gnu/ncurses/.

jacl GlkTerm by Andrew Plotkin and PDCurses (source included).

winjacl WindowsGlk by David Kinder (included as a DLL).

garjacl Gargoyle by Tor Andersson (included as a DLL and .so shared library).

To compile the relevant JACL interpreters and the bjorb utility you will need to first copy the Makfiles
appropriate for your system (either Unix or Microsoft). To do this, change to the src subdirectory and type the
following commands:

cp Makefile.<Unix/Microsoft> Makefile
cp glkterm/Makefile.<Unix/Microsoft> glkterm/Makefile
make install

This will compile all the relevant programs and copy the executable binaries into the bin subdirectory. If you
are compiling for Microsoft Windows, you will need the MinGW version of gcc.

All the extra DLLs required for Microsoft Windows are included in the bin directory. In Linux distributions,
only the core Gargoyle share library is included. This is file libgarglk.so in the src/Gargoyle directory and
should be copied to the directory /usr/local/lib. Other required libraries should be installed using your
operating systems packaging system. Below is the output of ldd to showing the complete list of libraries
required:

libgarglk.so libjpeg.so.62
linux-gate.so.1 libm.so.6
libc.so.6 ld-linux.so.2
libfreetype.so.6 libz.so.1
libgtk-1.2.so.0 libgdk-1.2.so.0
libXi.so.6 libXext.so.6
libX11.so.6 libglib-1.2.so.0
libpng12.so.0 libSDL_mixer-1.2.so.0
libSDL-1.2.so.0 libgmodule-1.2.so.0

Installation 5

libdl.so.2 libXau.so.6
libxcb-xlib.so.0 libxcb.so.1
libasound.so.2 libdirectfb-1.0.so.0
libfusion-1.0.so.0 libdirect-1.0.so.0
libpthread.so.0 libXdmcp.so.6

In the games directory you will find several JACL games. A JACL game consists of one or more .jacl files
and an optional .blorb file that contains multimedia resources used by the game. If a JACL game consists of
more than one .jacl file, the other file will be one of the library files from the include directory.

Inside the games directory you will also find a temp directory. This is the directory where the interpreter will
create the .j2 files. A .j2 file is a concatenation of a main game file and all other files included from that file.
They are created by the interpreter when the game is first run and are encrypted by default.

Under Unix, the user the JACL interpreter is run as must have write permissions to the temp
directory.

The include directory is found inside the games directory. In the include directory you will find
verbs.library, the main interactive fiction library and frame.jacl, a skeleton program used as a starting point
when writing a new piece of interactive fiction.

In the guide directory you will find this documentation.

Playing the Sample Games

Once you have compiled versions of the JACL interpreters, try running one of the provided games by
changing to the bin directory and typing the command:

./garjacl ../games/grail.jacl

When you do so, you should see something like the screen below:

The JACL Author's Guide

6 Compilation

The JACL Author's Guide

Playing the Sample Games 7

The JACL Author's Guide

8 Playing the Sample Games

Playing Interactive Fiction
Interactive fiction involves the reader in a way that static stories do not. Rather than reading sequentially from
beginning to end, you control the actions of the main character by typing commands in the form of simple
English sentences. Before setting out on your adventure there are a few concepts that must be explained in
order for you to interact successfully with the virtual world created by the author.

Moving Around

The physical space that you will be exploring is divided up into discrete units called locations. Locations may
be travelled between using the following commands:

Command Direction

n North

s South

e East

w West

ne Northeast

nw Northwest

se Southeast

sw Southwest

u Up

d Down

in In

out Out

The description of each location will tell you the directions in which you can travel from it. Be aware,
however, that some exits may only be available under certain circumstances such as while a door is open or a
bridge lowered.

Manipulating Objects

Within these locations you will find many objects that you can interact with. These objects may be referred to
by as few or as many of their names as is required to uniquely identify it. For example, if the story informs
you that "There is a silver key resting here." Then it may be referred to as either silver, key or silver key. If
your reference is ambiguous, such as using key when there is both a silver and a gold key in the current
location then you will be prompted to be more specific.

The next thing to learn about interactive fiction is the way in which you interact with these objects.

Playing Interactive Fiction 9

The basic sentence structures understood by the game are:

Command Structure
Example
command

action scream

action object take book

action object preposition object
unlock door
with key

An action does not necessarily have to be a single word. For instance, "examine rock through magnifying
glass", an example of the last syntax, may also be expressed as "look at rock through magnifying glass".
Following is a list of some of the other actions that can be used to interact with the objects you find:

turn read pull push eat cut

lock unlock rub attack taste drink

break smell listen pour move light

play blow throw wear open close

take drop insert remove

Where an object is expected, the words it, them, him and her can be used to indicate the last appropriate
object referred to in one of your commands. With some commands it is possible to supply more than one
object. Multiple objects can be specified in a multitude of ways. The words all or everything will tell the
interpreter that you wish to perform the action on all the objects in the appropriate scope. For example, with
the command drop all, the interpreter will perform the drop action for every object you are currently
carrying.

Any object reference can be qualified by using the word from. Although this can be used at any time, it is
most useful in conjunction with all to construct commands such as take all from chest. This command will
perform the take action for every object that is currrently inside the chest.

The word except can be used once per list of objects, with any object to the right of the word except being
removed from list of objects to the left. An example of this is the command take all from chest except the
gem. The important thing to be aware of with the word except is that any objects supplied after the word
except are objects the action is not to be performed on. With this in mind you can see how the two commands
below have very different results.

>take sword and all from chest except gem
>take all from chest except gem and sword

With the first command the sword will be taken, with the second command it will not. So in summary, any list
of objects may use the word from many times, but except only once at most. Individual objects can be
separated by the word and or a comma (,) while the word then or a period (.) is used to separate completely
different commands. Below is a legal command that uses all of the forementioned functionality:

>take sword, shield, all from chest and all from shelf except gem then go north

When playing interactive fiction, it is important to have a general feeling for how much can be achieved with
a single command. A task such as defusing a bomb would generally not be performed by typing defuse
bomb. The following is a sample transcript to give you a better feel for how a task such as this might be

The JACL Author's Guide

10 Manipulating Objects

achieved:

>examine bomb
The bomb is about a foot square and has a small panel in its upper
surface. The panel is currently closed.

>listen to bomb
The bomb is making an ominous ticking sound.

>open panel
You open the panel to reveal a red wire, a green wire, a blue wire,
a clock and some dynamite.

>i
You are carrying a bomb manual, an insurance policy and some wire
cutters.

>read manual
Leafing through the book you come to the page on diffusing. Seems
straight forward enough, just cut the blue wire then the red one.

>cut blue wire with cutters
Reaching carefully in to the bomb's casing you cut the blue wire. So
far so good.

>cut red wire with cutters
Holding your breath you snip the red wire.

>listen to bomb
The bomb, thankfully, is now silent.

As you can see, each task you wish to achieve must be broken down into its component actions.

Interacting with Characters

During the course of the story you may encounter other computer controlled characters. These characters may
be interacted with using the following commands:

talk to character

give object to character

show object to character

ask character for object

ask character about object

tell character about object

The JACL Author's Guide

Interacting with Characters 11

Meta Commands

There are also some special commands for interacting with the JACL interpreter rather than the game world it
is currently running:

Command Action

verbose Always describe locations when visited.

brief Only describe locations when being visited for the first time.

restart Restart the game from the beginning.

script Start recording a complete transcript of your game session.

unscript Stop recording a started transcript.

score Display your current score.

look Display the description for the current location.

save Save the current game state.

restore Restore a saved game state.

i Display a horizontal list of possessions.

inv Display a vertical list of possessions.

oops NewWord
Replace the erroneous word in the last command with the
supplied new word.

undo Take back the last command issued.

again Repeat the last command issued.

info Display interpreter version information.

about Display game version information.

You are now ready to embark on your first adventure into the world of interactive fiction. Remember to make
a map as you go and read everything carefully as vital clues may be hidden in the descriptions of the locations
and objects you come across. Examining every object you can refer to is a good idea, as is saving your
position often. Well, good luck, and above all have fun!

The JACL Author's Guide

12 Meta Commands

Tutorial Game
JACL is a language for writing interactive fiction. By providing short definitions for objects and locations you
will rapidly build your virtual world. By associating small amounts of simple code with these objects and
locations you will bring your world to life. During the course of this tutorial you will see the construction of a
small text-only game from beginning to end. The full source code for this tutorial game is included in
Appendix D and in the games subdirectory of your JACL distribution.

Language Syntax

JACL is an interpreted language. This means that the interpreter directly reads your program source code and
executes it without the need for it to be compiled first. Each JACL command or definition must be on a line of
its own and no single line may not exceed 1024 characters in length. Any single parameter that includes
spaces, commas, colons or tabs must be contained within double quotes, as these are all considered to be
white space. If a command accepts parameters, each parameter must be separated by white space.

Any text that appears between a hash (#) or a semicolon (;) and the end of the line is considered a comment
and has no affect on the program's execution. Comments are useful to explain the purpose of your code to
other authors or to refresh your own memory when returning to old code.

One special use of comments is to tell the command shell the location of the interpreter that can execute your
program. The first line of most JACL programs will be something like:

#!../bin/jacl

If a JACL program has a first line similar to this, when it is executed directly the shell will pass the name of
the program as an argument to the interpreter specified after the #!. This means that the following shell
command:

./grail.jacl

becomes the equivalent to the following command:

../bin/jacl grail.jacl

This line presumes that all games are run from the games directory of your JACL distribution and that you are
currently in that directory. To remove this restriction change the first line of your game to indicate the full
absolute path to your JACL interpreter of choice. For example:

#!/usr/local/bin/garjacl

In order for this to work on Microsoft Windows, you must be running a Unix shell under Cygwin.
To work under Unix, the JACL program must be set to executable using a command such as:

chmod 755 grail.jacl

Program Structure

A JACL program consists of two fundamental components: data and code. Data is provided in the form of
definitions, code in the form of functions. There are nine types of definition, their keywords being location,

Tutorial Game 13

object, synonym, filter, integer, constant, string, attribute and grammar. A function begins with a left
curly brace ({) followed directly by its name, and ends with a right curly brace (}) on a line on its own. Any
text that appears on the lines between the two curly braces is considered to be the code body of that function.
Other than comments, the only text that can appear outside a function is one of the nine definitions. While
definitions are read once at the start of the game then stored in memory, functions are executed from the game
file as required during play.

Getting Started

To begin writing your first adventure game using JACL you will need to copy the file frame.jacl from the
directory jacl-2.x/games/include to a file called game.jacl in the directory jacl-2.x/games. This new file is
the one you will edit to create your game.

The file frame.jacl is a skeleton program that provides a good starting point when writing a piece of
interactive fiction from scratch. The file verbs.library, is also included from the last line of frame.jacl. While
the code in frame.jacl should be modified to suit your game, the code in verbs.library should never be
modified. This allows new versions of verbs.library to be installed without adversely affecting your game.
Verbs.library contains a extensive set of verbs for use by the player during the game.

Now open game.jacl, the beginnings of our tutorial game, with your favourite text editor. The name
game.jacl has been chosen for the purpose of this tutorial, your game file can be given any name you like.

At the top of this file you will find four constants. These constants are used to store bibliographical
information about your game that can be directly read by cataloguing tools. For this reason the names of these
constants, including the case, must be left unchanged which their values changed as appropriate. For
information visit The Treaty of Babel.

Locations

In text adventure games, a location represents a discrete physical space that the player and other objects can
be in, such as a room in a house. Although objects can also be placed inside other objects, the player can only
be in a location. We will now begin to define the first location of this tutorial game. To do this, insert the
following line of code below the bibliographical constants:

location bedroom: master bedroom

This line states that we wish to define a location with the label bedroom. This label is the name by which we
will refer to this location within our code. For those of you with previous programming experience, you can
think of this label much in the same way as a variable name. Following the location's label is a
space-delimited list of names by which the player can refer to this location during game play. All locations
must have at least one name, and may have as many as can fit into a single line of code. In this example, the
location has two names: master and bedroom. If you do not supply any names, the location's label will
become its one and only name.

All the locations and objects you define have associated properties. When you define an object or location it is
possible to set the initial value of these properties. For the new location bedroom we are going to set the
initial value of two properties: short and west. This is done by adding two more lines to the location
definition so it looks like this:

location bedroom: master bedroom

The JACL Author's Guide

14 Program Structure

 short a "master bedroom"
 west bathroom

short is a two-value property used to supply a short description of the location. This description is used by the
library code when referring to the location in a sentence. The first parameter after the keyword short is its
indefinite article, the second is its description. The supplied indefinite article is used to prefix the description
when the {list} macro is used. This would normally be a or an.

The {list} macro is used as a parameter of a write command as a way of outputing text that refers to an object.
It is normally used when referring to an object or location in a list of several objects or locations. The most
common example of this is a list of objects that are inside another object or held by another object, such as a
desk drawer or the player's inventory. Below is an example of the {list} macro:

write "The house you are in has " bedroom{list} ".^"

When executed, this line of code will display:

The house you are in has a master bedroom.

The write command above uses this macro by specifying the label of the location bedroom followed by
{list}, the name of a macro. The other point of note with the above write command is the use of the caret
character (^). The caret character is used to indicate where a new line on the screen should be started. The end
of a write command does not automatically mean the end of a line of text.

The {list} macro is more commonly used with objects than locations, as only objects can be taken or placed
inside other objects. It is more common for locations to be referred to using the {the} macro. This macro
displays the object's definite article (the word the by default) followed by the object or locations short
description text. For example:

write "You are in " bedroom{the} ".^"

will display:

You are in the master bedroom.

"Why not just write You are in the master bedroom directly?" I hear you ask. Given the above two lines of
code, you could. The {list} and {the} macros are normally used, however, with an integer variable, not an
object label. All objects and locations are assigned a unique number starting at one and numbered sequentially
as they appear in your program. Using this numbering system, an integer variable can be used to refer to an
object or location. The most common integer variable used as an object pointer is noun1. This variable
represents the first object referred to in any given command typed by the player. For example:

write "There is nothing special about " noun1{the} ".^"

If the player was to type the command examine bedroom, the above code would produce the output:

There is nothing special about the master bedroom.

There is also one special purpose indefinite article: name. If name is specified as an object's article, the short
description text will not be prefixed with anything whether displayed using noun1{the} or noun1{list}. This
would normally be used when the description text is a proper noun. For more information on macros, see the
section on Printing the Names and Descriptions of Objects.

The JACL Author's Guide

Locations 15

The third line of our location definition states that if the player travels west from this location, then they
should be moved to a yet-to-be-coded location with the label bathroom. You will learn more about this soon.

The next thing we will do is give the location its long description. This is the text that the player will see when
they are in this location. We do this by associating a function called look with the location definition.

A function can be associated with an object, a location or be global. Functions are defined by starting a line
with an opening curly brace ({) followed directly by the function's name. Any function whose name does not
begin with a plus sign is automatically associated with the last object or location defined above it in the game
file. Any function whose name does begin with a plus sign is said to be global. A global function is in no way
associated with a particular object or location. A function definition is finished by placing a closing curly
brace (}) on a line of its own. More information about functions and how they are associated with items is
provided in the chapter on Functions.

Below is the code for the look function to be added directly beneath the definition for the location bedroom.
This function simply outputs plain text and therefore makes use of the print command instead of the write
command we used earlier. This command takes no parameters and starts outputing all text from the following
line until it reaches a line that has a period (.) as its first non-whitespace character.

{look
print:
 You are in your bedroom. There is a
 large, soft bed in the centre of the room
 while a doorway to the west leads into the
 bathroom.^
.
}

The colon after the print command is only an optional whitespace character used for presentation purposes.
When using the print command, any following line of text that does not end with a caret (^), will have an
implicit space added to the end before printing the following line. To prevent this space from being added,
finish the line with a backslash (\) character. For more information see the chapter on Screen Display.

As discussed earlier, the definition of the location bedroom refers to a second location called bathroom,
located to its west. We will now add this second location to the game. The code for this new location should
be placed after the look function that is associated with the bedroom:

location bathroom: bathroom
 short the "bathroom"
 east bedroom
 out bedroom

{look
print:
 You are in the bathroom. The only
 exit from here is back east to the bedroom.
.
}

{movement
if compass = east : compass = out
 write "You bang your head as you walk "
 write "through the doorway.^"
 return false
endif
write "The only exit from here is to the "

The JACL Author's Guide

16 Locations

write "east.^"
}

There are two points of note with this new location definition. Firstly, it demonstrates that it is quite valid (and
in some cases highly desirable), to have more than one direction lead to the same location. In this case, if the
player travels east or out from this location, they will be moved to the location with the label of bedroom.
This completes the logical two-way connection of the bedroom to the bathroom, and the bathroom to the
bedroom.

Secondly, it has a movement function associated with it. This function is called automatically by the
interpreter whenever the player moves, or attempts to move, out of this location. If this function does not exist
or returns false, the move will continue as normal. If the function returns true, the move will be prevented
from taking place. Any function that reaches its closing brace will terminate as though it had issued a return
true command. For move information on movement functions, see the section on Movement. The if statement
in the movement function says that if variable compass equals east or out, then the code up until the
matching endif command should be executed. The variable compass is set to the direction the player is
attempting to move in by the interpreter before the movement function is called. For more information on the
if command, see the section on Flow Control.

east and out are constants predefined in the interpreter to represent static numerical values.
All the directions that can be travelled in from a location are stored in a 12 element array.
These numerical values correspond to the index of the array element that stores the
destination for that direction.

The Player

Now that we have our small, two-location world, we need a player to explore it. There is a definition for an
object with the label kryten in frame.jacl. This object has been made with the specific purpose of
representing the player and looks as follows:

object kryten: myself self me
 short name "yourself"
 has ANIMATE; FEMALE
 capacity 42
 parent ;SPECIFY STARTING LOCATION HERE
 player

The label kryten was chosen for the object representing the player after playing Infocom's
Zork I with Frotz's -o option. This shows the object representing the player as having the
name cretin. Being both an Infocom fan and a Red Dwarf fan, the choice was obvious.

The first line of this definition starts with the keyword object. This tells the interpreter that we want to define
a new object with the label kryten. The words following this label are a list of names for the object. This, as
you will have noticed, is the same format as defining a new location.

In JACL, a colon is treated as white space (as is a comma and tab). I simply use a colon in
preference to a space in certain places to make the code more readable.

The second line contains a short keyword. This has the same purpose as the short keyword associated with
bedroom above. In the case of our object kryten, however, the word name appears as the indefinite article.

The JACL Author's Guide

The Player 17

When using a {list} or {the} macro, anything other than the word name is printed verbatim. When name is
specified, the JACL interpreter will not prefix the short description text with anything. For example, when
noun1 points to the object kryten, the following code:

write "You can't take " noun1{the} .^
write "You can't take " noun1{list} .^

will produce the output:

You can't take yourself.
You can't take yourself.

The third line of the object definition starts with the keyword has followed by the attribute ANIMATE. Both
objects and locations may have as many or as few of the available attributes as required. Attributes are simply
boolean flags that can be given to and taken from objects and locations at any stage during the game. They are
frequently tested for by code in verbs.library. For example, the standard function to open an object will first
check that it doesn't have the attribute LOCKED before taking away the attribute CLOSED, thus resulting in
it becoming open. The attribute ANIMATE is tested for by functions associated with actions such as talking.
If the player attempts to talk to an object that does not have the attribute ANIMATE, they are informed that
the action is not logically possible. For a more information, see the chapter on Attributes.

Following the attribute ANIMATE, you will see a semicolon then the attribute FEMALE. A semicolon (or
hash symbol) signifies that all text following it, until the end of the line, is a comment. Comments have no
effect on a game, they are only there to serve as notes for the author's benefit. In this case, deleting the
semicolon will mean that the extra attribute will no longer be ignored. This will cause the player to be referred
to in the feminine by all code in verbs.library.

The fourth line, beginning with the keyword capacity, indicates how many mass units the object can hold. In
the case of an object with the attribute ANIMATE (such as this object representing the player), it indicates
how much they can carry. In the case of an object with the attribute CONTAINER, it indicates how much can
be placed inside it, while in the case of an object with the attribute SURFACE, it indicates how much can be
placed on top of it.

The fifth line, beginning with the keyword parent, is followed by the label of another object or location. This
indicates where the object is to be when the game starts. In this game, the player is to start in the location
bedroom, so we must modify this line to read:

parent bedroom

If an object doesn't have a parent property explicitly defined it will start the game with its parent property set
to the nearest location defined above it in the game file.

The final line has the keyword player. This keyword tells the interpreter to set the interger variable player to
point to the object kryten before the game begins. Only one object should have the keyword player defined,
although the object pointer player can be changed to point to another object at any stage during the game if
desired.

The properties that are associated with an object definition may be placed in any order. There are other
properties that can be associated with an object that we have not set here, as the defaults used when they are
absent are valid for our purposes. All of the possible properties are discussed in the chapter Definitions in
Detail.

The JACL Author's Guide

18 The Player

Some Introductory Text

When a game is started or restarted, the function +intro is executed. The main purpose of this function is to
display the game's title, the author's name and some text introducing the game. Any other commands required
to set the initial state of the game-world can also be placed in +intro. Below is the +intro function for the
tutorial game. This is simply the +intro function already present in your skeleton game file with an extra
print block added after the title and the author of the game are written to the screen:

{+intro
style bold
write "^^" GAME_TITLE
style normal
write " by " GAME_AUTHOR "^^^"

print:
 Your alarm rings and you climb out
 of bed. Monday morning again so soon. Oh well,
 at least your house doesn't have a front door
 so you have a good excuse for not going to
 work.^^
.

if here hasnt OUTDOORS
 move north_wall to here
 move south_wall to here
 move east_wall to here
 move west_wall to here
endall

move ground to here

look
}

This function begins by using the style command to set the font to bold and then printing the value of the
string constant GAME_TITLE. This will be whatever string you set it to at the top of your game file. Next
the font style is set back to normal and the value of the string constant GAME_AUTHOR is output. The
author's name is followed by three newline character to insert two blank lines. For more information on these
commands see the chapter on Screen Display.

After the title header, a game-specific print block outputs the introductory text for this game. This is the text
that should set the scene for the player and introduce them to the game character they are playing.

The next block of code moves all the wall objects to the current location if the current location doesn't have
the attribute OUTDOORS. These objects are defined in the file frame.jacl and should be moved to the
current location each time the player moves to a location that doesn't have the attribute OUTDOORS. This is
done using a similar block of code placed in the global function +movement. When the function +intro is
executed, the current location will always be the starting location. For this reason, the if statement is not
strictly necessary, but it is a good safeguard none the less.

The final line of the function contains a look command. This command prints the description of the current
location and objects that are in this location.

Below is the default content of the function +movement that is executed each time the player attempts to
move out of the current location:

The JACL Author's Guide

Some Introductory Text 19

{+movement
ifall destination != nowhere : destination hasnt OUTDOORS
 move north_wall to destination
 move south_wall to destination
 move east_wall to destination
 move west_wall to destination
endif
return false
}

Objects

You can now try playing the beginnings of this game by first typing the command from within the games
subdirectory:

../bin/garjacl game.jacl

When you do so, you should see something like the screen below:

The JACL Author's Guide

20 Objects

Once playing, the following commands should give you the responses shown:

>w
You are in the bathroom. The only exit from
here is back east into the bedroom.

>i
You are empty-handed.

>smell
Nothing strikes you as out of the ordinary.

>listen
You don't hear anything out of the ordinary.

>sit
You plonk yourself down for a moments rest.

>examine north wall
There is nothing special about the north wall.

As you can see, at this stage there is very little for the player to interact with in this game. Therefore, the next
thing we will do is add another object: a small wooden box. We add the small wooden box by inserting the
following object definition after the bathroom's look function:

object box: small wooden box
 has CLOSABLE CONTAINER CLOSED
 short a "small wooden box"
 long "There is a small wooden box here."
 mass 25
 capacity 20

The first line says that we are defining an object and that it should have the label box. It then goes on to say
that it can be referred to by the player with any combination of the names small, wooden and box.

The second line states that it should have the attributes CLOSABLE, CONTAINER and CLOSED. These
attributes tell the appropriate verbs in the library that this object may be opened and closed, have things placed
inside it and that it should be closed when the game begins.

The third line, as with the short statement for the object kryten, indicates the text to appear when either the
object's {list} or {the} macro is used. In this case, however, rather than name, the article is set to a. Therefore,
when noun1 is set to box:

write noun1{list}

will display "a small wooden box", while

write noun1{the}

will display "the small wooden box".

The fourth line, beginning with the keyword long, details the text to be displayed when this object is in the
current location. If an object has a mass of scenery, the long text will not be displayed. This is because a
mass of scenery indicates that the object cannot be taken and should therefore be described in its parent
location's look function instead, if at all.

The JACL Author's Guide

Objects 21

Internally, scenery is a constant with a value of 100 while heavy has a value of 99. An object that
has its mass set to heavy will have its long text displayed when the object is in the current
location, but can't be taken by the player. It is good to keep this in mind when choosing a mass
value for each object.

The fifth line sets this object to have a mass of 25. When the player takes an object, the value of the object's
mass property is subtracted from the player's capacity property. This indicates that the player's capacity
property must currently be 25 or greater for him or her to be able to take the box. Any other container object
the player attempts to put the box in or on must also have a capacity property that is currently 25 or greater.

The final line, a capacity property, indicates how many mass units the box can hold. In this case it is set to
20. This means that other objects may be placed inside this object (due to it having the CONTAINER
attribute) until the total of their mass properties equals 20.

As this new object has no parent property, it will start the game in the bathroom. This is because the
bathroom is the nearest location defined above it in the game file. Any objects with no parent property will
begin in the nearest location above it regardless of the number of object or function definitions inbetween.

Before we play the game again, we will add a second object by putting the following code beneath the
definition for the box.

object note: orange note
 short an "orange note"
 long "An orange note rests on the ground."
 parent box
 mass 5

As you can see, the note's parent property is followed by the label of the box object. This indicates that the
note is to start the game inside the box. If this parent property where to be omitted, the note would begin in
the bathroom along with the box, as this is the last location defined above it in the game file.

If the box object had the attribute SURFACE rather than CONTAINER, the note would start the game on
top of it. If the box object had the attribute ANIMATE, the note would start the game being carried by it.

Verbs and Functions

Now if you restart the game, you can walk west into the bathroom and find the small wooden box. You can
take it, open it, look in it, close it, and apply a whole range of other standard verbs present in verbs.library to
it. When it is open, you will also be able to take the orange note out of it.

To explain a little bit about how verbs work, lets take a closer look at the verb read. The grammar definition
and the global function for the verb read can be found in verbs.library and are reproduced here:

grammar read *present >read

{+read
if +important<noun1 = true
 return true
endif
if +darkness = true
 return true
endif
write "There is nothing on " noun1{the} " to read.^"
}

The JACL Author's Guide

22 Verbs and Functions

This grammar definition states that if the player types a command of the format "read ObjectThatIsPresent"
during the game, then certain functions with the base name read should be executed.

When the player makes a move, the JACL interpreter will set the integer variables noun1 and noun2 to point
to the objects referred to in the command. They will be set based on the order the objects appear in the move.
For example, if the player types the command give sword to troll the +give_to function would be called with
noun1 being set to the sword and noun2 being set to the troll.

Returning to our read example, upon identifying the player's command as matching this grammar definition,
the JACL interpreter will first attempt to execute a function called read that is associated with the object that
the player is attempting to read. If this does not exist, it will try to execute the same function name only
prefixed with a plus sign. This is a global function and can be thought of as the default action that occurs for
that verb if no object-specific one is provided.

Since we have not associated a read function with our note object, when the player attempts to read it the
global function +read will be executed. If you try this you will see that the default action for the read verb is
very simple, but appropriate for most objects. The default function +read is not an appropriate, however, for
our note object. We will therefore replace it by adding a function called read that is associated with the object
note. This function is even simpler:

{read
write "Welcome to Jamaica and have a nice day.^"
}

We associate this function with the note object by typing it directly after the note object's definition. For
clarity, you can of course leave a blank line or two in between the note definition and read function. This local
read function will now be executed in place of +read whenever the player types the command read note,
provided the note is visible to the player.

The read function above should really be given two names. This is done by placing the second
name after the first, such as {read : examine. This means that both reading and examining the note
will lead to the same code being executed. Any function may have as many names as can fit in a
single line of JACL code.

Overriding Functions

Compared to +read, the +close function is quite long. Although the default +close function is perfectly
suitable for our needs, we will use it to demonstrate overriding the default outcome of a function. The +close
function is reproduced here:

{+close
if +important<noun1 = true
 return true
endif
if +darkness = true
 return true
endif
if +reach<noun1 = true
 return true
endif
if noun1 hasnt CLOSABLE
 write "You can't close " noun1{the} .^
 set time = false
 return

The JACL Author's Guide

Overriding Functions 23

endif
if noun1 has CLOSED
 write noun1{The} noun1{is} " already closed.^"
 set time = false
 return
endif
override
write "You close " noun1{the} .^
ensure noun1 has CLOSED
}

During the course of the +close function, several tests are performed to determine the appropriate outcome. At
the point in the function where it is decided that the command should be successful there is an override
command. This command tells the JACL interpreter to look for a function called close_override that is
associated with the object that the player is attempting to close. If this exists it will be executed in place of
anything beyond the override command. If this does not exist, then execution of the +close function
continues as normal from the line following the override command.

The reason for the override command is that a close function that is associated with any object will get called
straight away, completely replacing all the code in the default function +close. This means that any test, such
as whether the object is already closed, will have to be repeated manually in the new, local function. This is
not so much of a problem with a simple verb like read, as no tests are performed, but with some other verbs
this can be a considerable amount of code. The override command therefore provides an opportunity to
override only the outcome, not the entire function.

To demonstrate, we will override the normal outcome of closing the box. This is done by associating the
following function with the object box:

{close_override
write "The lid creaks as you push it closed.^"
ensure box has CLOSED
}

When the box is closed by the player, all the tests before the override command in the +close function will be
executed. If all the tests pass, the code in close_override will be executed in place of any code after the
override command.

It is important to be careful that you use an override function (or perform the tests
manually) whenever a verb has several possible outcomes. If the above function was to be
called close, as opposed to close_override, then the box could be closed over and over
again - clearly a bug.

Doors

We will now add a third and final location. This location will be a living room and will be placed south of the
bedroom. We are also going to place a door between the bedroom and living room. Doors are common in
interactive fiction, implemented using a regular object, and yet in some ways odd and out of the ordinary. The
thing that makes a doors different to most of the other objects in your game is that they live between two
locations, rather than inside one, and need to be accessible from both locations.

Before we move onto the door itself, add the following location definition beneath the close_override
function that is associated with the box:

The JACL Author's Guide

24 Doors

location living_room: living room
 short the "living room"
 north nowhere

{look
if here has VISITED
 print:
 You have returned to the living
 room.^
 .
else
 print:
 You are in the living room. There
 is a small television perched on a low-lying
 table in front of a sofa.^
 .
endif
}

The look function associated with the living room is slightly more complex than those associated with the
other locations. After the player enters a location for the first time, it is automatically given the attribute
VISITED by the JACL interpreter. This latest look function tests the current location for this attribute and
displays a shorter, more appropriate description if it has it. Feel free at this stage to go back and add this test to
the look functions for the bedroom and bathroom. The north direction is specified as leading to nowhere as
the game will start with the door closed. As nowhere is the default for an unspecified direction, we could
have simply omitted it. I prefer to specify nowhere for directions that only currently lead nowhere, but will
change during the course of the game.

As you may have guessed, I would also add this line to the bedroom giving the complete definition of:

location bedroom: master bedroom
 west bathroom
 south nowhere

As you will see later, we will make the door accessible from two locations by moving it around, so it does not
really matter when you define its object. As the player begins the game in the bedroom, and this is where they
will first encounter the door, beneath the bedroom definition is as good a place as any for the door's definition:

object door : bedroom door
 short the "bedroom door"
 has CLOSABLE CLOSED

{open_override
set bedroom(south) = living_room
set living_room(north) = bedroom
return false
}

{close_override
set bedroom(south) = nowhere
set living_room(north) = nowhere
return false
}

The above code defines an object for the door that has the attributes CLOSABLE and CLOSED. These
attributes allow the verbs in the library to manipulate the door appropriately. Like the box, the outcome of the
close verb is overriden, as is the outcome of the open verb. Unlike the box, the override functions for the door

The JACL Author's Guide

Doors 25

both end with a return false command.

As discussed above, when the interpreter encounters the override command in the global function +close, it
will look for the function close_override that is associated with the object being closed. If this function does
not exist, or returns false, execution will continue from the first line after the override command. As we have
defined an associated close_override function, it will be executed at this point. It is possible, however, for the
override function to issue a return false after a test has determined that the default outcome is sufficient in a
particular instance. If this happens, the close_override function simply provides some code to execute in
addition to the default outcome. In other words, the default outcome will occur as if the override function did
not exist at all if the override function returns false.

Now it is time to move the door between the bedroom and living room so that it is accessible from both
locations. As with most programming challenges, there are many ways the desired effect could be achieved.
One option is to create two doors, one in the bedroom and one in the living room, then keeping these two
doors synchronised. In this case we are going to add two eachturn functions: one associated with the
bedroom and one with the living room. These two functions move the door to the current location and each
have a single line of identical code:

{eachturn
move door to here
}

It is possible to give a function more than one name by supplying a list of names separated by white space.
This is a very common technique for making several possible moves by the player cause the same outcome.
For example, in The Unholy Grail, the message for examining the rod for opening and closing the blinds is
exactly the same as the one for attemting to take it:

{examine : take
print:
 The plastic rod is attached to the blinds and
 can be turned in order to open and close them.^
.
}

Internally, when a function is associated with an object, the function's name is stored as the supplied name
followed by an underscore, then the label of the object it is associated with. This means that the above
function would have two full internal names being examine_rod and take_rod. As the two eachturn
functions in this tutorial game have identical content it would be good to use a similar technique to avoid the
duplication. The difference between the eachturn functions and the examine and take functions is that with
the eachturn functions, it is the same action for two different objects (in this case, locations) rather than two
different actions for the same object. It is possible to overcome this problem by prefixing one of the function's
names with an asterisk (*), and then supplying a full internal name manually. The asterisk will not become
part of the full internal name (unlike the plus sign at the start of a global function), it simply tells the
interpreter that you are going to handle the association manually and that it should not automatically add the
label of the object above it in the source file as a suffix.

Using this technique we are able to write a single eachturn function and associate it with both the bedroom
and the living room by adding the following code somewhere below the definition for the living room:

{eachturn : *eachturn_bedroom
move door to here
}

The JACL Author's Guide

26 Doors

This will create a function that has two names. The full internal version of these two names will be
eachturn_living_room and eachturn_bedroom. The first association is done automatically while the second
is done manually by using the asterisk prefix. Don't worry if this doesn't make complete sense to you right
now, it is not an essential technique for writing JACL games, particularly with functions as short as this
eachturn function. More information on creating a function name using the asterisk prefix can be found in the
chapter on Functions.

Regardless of whether you use this technique, or associate an identical eachturn function with the bedroom
and the living room in the usual manner, you will now have a functioning door. The door is handled correctly
by the library verbs open and close due to having the CLOSABLE attribute and it is always accessible from
the bedroom and living room thanks to the eachturn functions. Finally, the extra code supplied in the
open_override and close_override functions create and destroy the extra links between the bedroom and
living room as appropriate.

It is also possible to have moved the door from location to location using movement functions that
are associated with bedroom and living room. These functions would need to test which way the
player is travelling, and move the door to that location if it is into the bedroom or living room.
Although this requires slightly more complicated code, it is more efficient as the move is only done
once when required, not every turn that the player then spends in that location. With a small game
like this, however, simplicity is of greater concern than performance.

The JACL Author's Guide

Doors 27

Non-player Characters

Most games will include at least one character other than the player, and this small tutorial game is no
exception. The character we will add is the player's son who will be sitting in the living room watching
television. Fortunately for us, simulating the responsiveness of a teenager watching television is not hard.

We will begin by adding the following two object definitions and their associated examine functions beneath
the definition for the living room:

attribute EXAMINED

object television: television tv tele
 short a "television"
 mass scenery

{examine
if self has EXAMINED
 write "It's Rick who is the TV addict, not you.^"
 return
endif
write "There is currently a cartoon showing on the "
write "television.^"
ensure self has EXAMINED
}

object rick: son boy teenager rick
 has ANIMATE
 short name "Rick"
 long "Rick is here, watching television."
 mass heavy

{examine
if @ = 1
 print:
 Rick is staring blankly at the television screen.^
 .
else
 print:
 Rick is still gazing into the television's screen.^
 .
endif
}

Before the object definitions is the definition of a user attribute called EXAMINED. Up to 32 user attributes
can be defined, and like the system attributes CLOSABLE and CLOSED, they don't have a value, they are
simply flags that an object either has or hasn't. The examine function for the television makes use of this
attribute to test if the television has already been examined before. Unlike defining a constant as a synonym
for one of an object's integer properties (see the section on The Passing of Time below), user attributes are not
synonyms for system attributes, they are an entirely separate set of 32 attributes.

The examine function for Rick achieves a similar result using an entirely different mechanism. When the
JACL interpreter executes a function it automatically creates and increments a counter that records how many
times that function has been called. This counter is referred to in code as an at sign (@) followed by the name
of the function. For example, the number of times the function called when examining Rick has been called
can be checked from any other code by examining the contents of the container @examine_rick. When an at
sign is referred to on its own, such as in the example above, it is taken to refer to the call count of function that

The JACL Author's Guide

28 Non-player Characters

is currently running.

To make both Rick and the television respond to the player's commands, we will be required to associate more
functions with each of them. This process of creating objects and associating functions with them is the
essence of writing text adventure games using JACL.

The first action we will cater for is talking to Rick. The grammar statement that matches the command talk
to rick calls the function talk_to. Therefore, in order to give a custom response to this command, we must
associate a talk_to function with the object rick. This function should look as follows:

{talk_to
print:
 ~Uh, yeah, I'll do it in a minute,~
 Rick mumbles with out looking up. You have
 quite a strong suspicion that he didn't
 really hear a word you said.^
.
}

The above talk_to function is associated with Rick in the same way that the read function was associated
with the note earlier. For a complete list of all the grammar statements defined in the library and the names of
the functions they call, see APPENDIX B: Library Verb Functions.

As double quotes are used to enclose any command parameter that contains spaces, attempting to
print a double quote directly to the screen will not give the desired results. Wherever you want to
print a double quote put a tilde character (~) and the interpreter will print a double quote in its
place.

To code a response to the player asking Rick about something in particular, you need to associate a function
that has a compound name with the object rick. The grammar definition for the command ask noun1 about
noun2 calls the function ask_about, so this is the beginning of the function name. You specify which object is
being asked about by appending an underscore and then the label of the object to the function name. For
example, the following function (when associated with the object rick) will be called if the player types the
command ask rick about note:

object rick: son boy teenager rick
 ...

{ask_about_note
print:
 ~I don't know nothing about no note,~ Rick says
 looking at your blankly.^
.
}

This gives a custom response when the player asks Rick about the note, but what if we want to give the same
custom response no matter what object Rick is asked about? The hard way would be to associate a function
for each and every object that prints your required response. The easy way is to write a +default_ask_about
function and test whether the person being asked is Rick. Any +default function can be thought of as a
replacement for the code that comes after the override command. If you search through the verbs.library for
override commands you will see that they occur at the point in a verb's global function where it has been
decided that the verb should be successful. This allows a +default function to override the default outcome of
a verb without needing to repeat all the preliminary checks. The global default function for any given action
is called when an override command is reached and a specific override function for the object or objects in

The JACL Author's Guide

Non-player Characters 29

question does not exist. The order that functions are called in and the precedence they have over each other is
fully detailed in the chapter on Functions.

This is +default function is a global function (as indicated by the leading plus sign), so it doesn't matter where
you put it in the code. Here is the code to create a default response for whenever Rick is asked about an
object:

{+default_ask_about
if noun1 = rick
 print:
 Rick blinks several times then
 pokes out his bottom lip. This, you have
 figured out over the years, translates to,
 ~Not a clue.~^
 .
 return
endif
return false
}

If both this function and the specific ask_about_note function exist, the ask_about_note function
will be executed if player types ask rick about note in preference over this function.

The first thing this function does is test the current value of noun1. As disscussed above, noun1 and noun2
are object pointers that point to the first and second objects referred to in the player's move. If this is currently
set to rick, our new default message will be displayed. If noun1 is not set to rick, a return false command is
executed. This command causes the interpreter to do whatever it would have normally done had this function
not existed at all. In this case, the result would be to perform the original default action specified in the
library.

The Passing of Time

In many games actions will occur based on the passing of time rather than the direct actions of the player. If
the player was to do nothing other than type wait, people would still come and go, the song playing on a
nearby radio would change and the sun would set. All these events would be coded for within an eachturn
function. There can be an eachturn function associated with each location and a single global one.

The variable time is automatically set to true before the player types each of their moves. If the player's move
is not possible, this variable should be set to false. If, when the command has been fully processed, time is
still set to true, the appropriate eachturn functions are executed. The first function executed, if it exists, is the
eachturn function that is associated with the location the player is currently in. When this has finished, the
global function +eachturn is executed. Once +eachturn has finished executing, the processing of the player's
command is complete.

To demonstrate, we will make Rick take a sip from his drink every five turns, regardless of what the player
does. As this would happen regardless of whether the player is in the room or not, we will put the code to
handle this in the global eachturn function:

constant turns_since_last_sip 5

{+eachturn
set rick(turns_since_last_sip) + 1

The JACL Author's Guide

30 The Passing of Time

if rick(turns_since_last_sip) = 5
 if here = living_room
 write "Rick takes a sip from his drink.^"
 endif
 set rick(turns_since_last_sip) = 0
endif
}

Each object has sixteen integer properties that can be set and tested. The properties parent, capacity and
mass are three of these integer properties that you have already seen. For a complete listing, see the chapter
Definitions in Detail. These sixteen properties are stored in an array, with parent, capacity and mass being
the first three integers, stored in the order starting at index 0. This means that the following code will print the
number 25 twice:

object cube : timber cube
 short a "timber cube"
 mass 25

{+some_function
...
write cube(mass) ^
write cube(2) ^
...
}

As the parent property is an integer property, only the index of the parent object is stored. When objects are
defined in your game, there are given a sequential integer index starting with 1. As objects and location are
both stored internally as objects, this numbering system makes no distinction between the two. This means
that if a location representing a forest is the first object or location defined in the game, setting any other
objects parent property to 1 will place it in the forest. Although potentially dangerous if you rearrange your
game code, this also allows you to test if the player is in a certain section of your game world by testing if the
value of here (an internally defined synonym for player(parent)) is within a certain range of values.

The status property of an object is set and tested in the same way as the parent property. The status property,
however, has no pre-determined use so we are free to use it as our counter. In order to make our code more
readable and self-commenting, before the +eachturn definition, is a constant definition with the name
turns_since_last_sip with a value of 5. The status property is the sixth integer property and therefore has an
index of 5. By creating this constant we are able to use an object's status property through a more appropriate
synonym. The code in the +eachturn function increments this property by one after each successful move
made. When it equals 5 a message is displayed (if the player is in the living room) and it is set back to zero.
The process will then loop over and over again.

Winning and Losing the Game

Our mini game is not much good unless it can be won. For this to happen, the player must have a goal and be
awarded points for each obstacle they overcome along the way. The goal for this game is going to be to find
the television guide and give it to Rick. To make this game a fiendishly-clever all-time classic we are going to
hide the guide under the bed.

Before we do this, however, we are going to introduce an element of danger by adding some code to cater for
switching the television off. We already have an object for the television, so all we need to do now is associate
a turn_off function with it. This should look like the following:

{turn_off

The JACL Author's Guide

Winning and Losing the Game 31

print:
 As you reach over and switch off the
 television, you get quite a shock to see Rick
 rapidly growing a coat of hair and foaming at
 the mouth. The shock of this is only surpassed
 by that of him sinking his newly
 acquired fangs into your throat.^^
.
execute "+game_over"
}

Okay, so killing the player without any real warning is grossly unfair, but is serves as a demonstration of how
to handle the player dying. The last line of the above function is an execute command that calls another
function with the name +game_over. This function is included in the file frame.jacl and looks like this:

{+game_over
write "^"
execute "+score"
endgame
}

This function uses another execute command to call a function that displays the player's score. It then uses the
endgame command to signify that the game has ended and that the player should be presented with the option
to restore a previously saved game, undo the last move, restart or quit.

Before we move on to winning the game, it is worth mentioning that the default response for turning an object
on is to say that this cannot be done. In the case of the television, it would be important to add a turn_on
function stating that the television is already on.

Now, on to the television guide. To implement this puzzle we are going to need two more objects: the guide
itself and the bed to hide it under. Begin by defining an object for the bed somewhere beneath the definition
for the bedroom (but before that for the bathroom). Beneath that, add a definition for the television guide. The
television guide must have its parent property set to limbo until the player has discovered it. The location
limbo is defined in the library and is used exclusively for situations such as this where we need somewhere to
temporarily store objects that the player should not have access to. Finally, we must associate a look_under
function with the bed that moves the guide to the bedroom and awards the appropriate points. Here is the
complete code for all of this:

object bed: bed
 short a "bed"
 mass scenery

{look_under
if guide(parent) = limbo
 print:
 Hidden under the bed you
 find this week's television guide.^
 .
 set guide(parent) = here
 points 50
 return
endif
write "You don't find anything else.^"
}

object guide: television tv tele guide
 short a "television guide"

The JACL Author's Guide

32 Winning and Losing the Game

 long "The television guide is here."
 parent limbo
 mass 5

{examine : read : look_in
write "It contains a listing of this "
write "week's programmes.^"
}

It is important with objects that share names, such as the television and the television guide to be
aware of which object has the most names. If only shared names are used, the object with the
lowest number of names will be selected. For more information, see the chapter on Object
Resolution.

Now, when the player looks under the bed, the guide will be moved from its initial location, limbo, to the
bedroom. Once this has been done, the player will be able to take it. The points command will increase the
player's score by 50%. The if statement in this function ensures that this can only be done once.

We will now associate a give_to_rick function with the guide. This will be the winning move and should look
like this:

{give_to_rick
print:
 ~Cool!~ Rick exclaims as he
 snatches the guide from your hands.^^
 Satisfied that you have achieved
 at least one thing today, you decide to
 go back to bed.^
.
points 50
execute +game_over
}

And so the game is won. The extra 50 points give the player a total of 100, and the function +game_over is
executed.

In order to make this tutorial game more complete, other moves the player is likely to try would need to have
custom responses added by associating the appropriate functions with the appropriate objects. The more
obvious of these include: showing the guide to Rick, telling Rick about the guide and sleeping on the bed. In
fact, the more moves you can give custom responses to, the more depth and character the game will have.
Also, anything prominent that is mentioned in a location's description, such as the table and sofa in the living
room, should also be defined as objects. This enables the player to refer to them, even if they aren't important
to solving the game.

If you have an object that logically needs to be in your game as a part of the scenery, but don't want players to
waste their time on it as it has no real purpose, you can give it the attribute NOT_IMPORTANT. This
attribute causes all the verbs in the library to give a special response that tells the player there is no need to
worry about interacting with this object. By giving a minimal implementation of objects this way, you avoid
the player receiving a "You can't see any such thing." message, without the object being perceived as a red
herring. For example, this could be used with the sofa in living room using the following minimal code:

object sofa : sofa
 short a "sofa"
 has NOT_IMPORTANT

The JACL Author's Guide

Winning and Losing the Game 33

No anytime the player attempts to refer to the sofa they will receive the message:

The sofa is not important, you don't need to worry about that.

Although not a large or complex game, this tutorial game does demonstrate most of the elements of JACL that
you will need to create a more complete piece of interactive fiction. The rest of this guide contains a complete
reference description of every feature of the JACL language and interpreters. It is recommended that you at
least skim through these chapters in order to gain an awareness of the features at your disposal.

The JACL Author's Guide

34 Winning and Losing the Game

Testing, Debugging and Releasing
After you have finished writing your game it is important to test it thoroughly before it is released. In a game
of any real size, many bugs exist and will only be discovered through extensive beta testing. This chapter
covers some tools and techniques for debugging a piece of interactive fiction written using JACL.

The most immediate indication you will get of a problem with your game is an error message while trying to
load the game. Errors with the definition of data (such as objects and variables) that are detected while loading
your game will specify the line number the error occurred on. The line numbers specified are those from the
.j2 file created in the temp directory. If the only files you include in your game (using the #include directive)
are at the very end, the line numbers specified in the error messages will be equivalent to the lines in your
original .jacl source file. If you include files at various points before the end of your game, the line numbers
specified will not be equivalent. In order to investigate the offending line of code in this situation you will
need to look directly at the processed .j2 file.

The WALKTHRU Command

The walkthru command allows you to specify the name of a text file that contains a list of moves to process
as though they were typed by the player. The text file must contain one command per line and may contain as
many commands as you would like. The default name for a walkthru file is GameName.walkthru. It is
common for this default file to issue all the commands required to get from the beginning of the game to end.
This can vary from the most direct path using the minimum commands to the most thorough path visiting
every part of the game along the way. Other shorter walkthru files may also be created that take the player
from one specific point in the game to another.

Walkthru files have two advantages over saved game files. The first is that as soon as you add or remove an
object or variable to a game, saved game files made using a previous version of the game can no longer be
loaded. This means that without the use of a walkthru file, play testing the end of the game would involve
tediously playing the beginning of the game over and over again as it grows. The second advantage is that a
walkthru file shows all the output from every command rather than just instantly teleporting you to a future
(or past) point in the game. This makes walkthru files useful for regression testing. By running through a
walkthru file after changing some code in your game, you are able to test that everything that previously
works still works as expected by quickly scanning the transcript.

When a walkthru script is running, no [MORE] prompts will be displayed, including those explicitly
displayed by a more command. Below is a sample of a walkthru file, being the top ten lines from
grail.walkthru:

w
n
turn off lights
close blinds
examine screen
s
s
take gps
n
w

As you can see, walkthru files are of a simple format that can be created with any text editor.

Testing, Debugging and Releasing 35

Transcripts

The JACL interpreter provides a mechanism for recording a transcript of a game while it is being played.
Recording is started by using the script command then entering a filename to save the transcript to.

As well as being interesting records to keep of your playing, transcripts are an enormously useful way of
receiving feedback from people who beta test your games. While recording a transcript it is possible to insert
a comment by typing an asterisk as the first character at the command prompt then following it with the
comment you would like to add. For example, the in-game command:

>*It is possible to open the door even when it is locked.

will appear in the currently active transcript with only the following response:

Comment ignored.

You stop a transcript from being recorded by using the command unscript.

The JACL Author's Guide

36 Transcripts

The Debug Library
The library debug.library contains a set of JACL verbs that are useful for testing your game during
development. This library should be included using the #debug directive so that it is not included in the
release version of your game (see below).

The INSPECT Command

The inspect command displays the label, attribute and element values of the object passed as a parameter.
Two special verbs in debug.library allows an object to be inspected while playing a game, these are inspect
and inspectobj. Below is some sample output of the inspect verb from The Unholy Grail:

>inspect drawer
label: compartment
has object attributes: CLOSED CLOSABLE CONTAINER
has user attributes:
parent: device (112)
capacity: 6
mass: 100
bearing: 0
velocity: 0
next: 0
previous: 0
child: 0
index: 0
status: 0
counter: 0
points: 0
class: 0
x: 0
y: 0

The above output is a dump of the current values of all of the object's properties, including attributes. The
object chosen by the inspect verb is determined using the standard rules for object resolution based on the
names provided. In this case, the single name drawer has uniquely identified an object with the label
compartment.

It is also possible to use the command inspectobj to give the same details as above for whichever object an
expression resolves to. For example, the follow two commands will show the detail of the player's current
location:

>inspectobj player(parent)
>inspectobj here

The Verb VALUEOF

The valueof verb is a way of displaying the current integer value of any resolveable container. This includes
an object label, an object element and an integer variable or constant. Below is an example of the valueof
command being used while playing The Unholy Grail:

>valueof report(parent)
report(parent) = 44

The Debug Library 37

The Verb FETCH

Where the verb inspect is a way of accessing the JACL command inspect during game play, fetch is simply a
convenience verb to move an object to the current location and remove the attribute OUT_OF_REACH from
that object should it have it. The verb is handy when you need to test a puzzle that involves the use or one or
move objects that are time consuming to obtain manually.

For thorough testing it is preferable to use the walkthru verb to test all the steps normally taken to obtain the
object or objects, but fetch can still be of use when testing small parts of your game in isolation.

The JACL Author's Guide

38 The Verb FETCH

Releasing Your Game
Once you have completed your game and all known bugs are fixed you will want to release it to the public to
be played. Although it is possible to simply distribute the .jacl file you have been working on (presuming only
standard JACL libraries are used), it is often preferable to distribute the .j2 file. This file is created in the
temp subdirectory when the game is run. This file can be thought of a statically-linked version of your game,
with all #included files appended to the game file. In addition to appending all the required library files,
unnecessary whitespace is removed from the beginning of each line to reduce file size and improve run-time
performance.

Although a .j2 file is created each time your game is run, it is possible to use the -release argument when
running jacl to produce a file more suitable for distribution. The argument will cause the .j2 to be encrypted
(mildly), and to only contain files included with the #include directive, not the #debug directive.

If you wish to create a .j2 file that does not include the #debug files, but is not encrypted, you can supply the
arguments -release -noencrypt.

Releasing Your Game 39

The JACL Author's Guide

40 Releasing Your Game

Screen Display
Interactive fiction is primarily a text-based medium and this chapter discusses all the features of JACL that
relate to the output of text. Depending on the Glk library used, JACL interpreters may also provide the ability
to add graphics and sound to your games. The use of these features is covered in the following chapter, Glk
and Multimedia.

The WRITE Command

The write command is the most flexible method of outputting text. It takes one or more parameters, each
separated by a whitespace, and prints the result to the screen. A parameter can either be plain text, a string or
integer variable, a string or integer constant or an object macro.

For example, the following command:

write Hello, world!

contains two separate parameters, the string Hello and the string world! (the comma after hello is considered
to be white space.) When executed it will produce the following output:

Helloworld!

This is obviously not the desired result. The correct way to print this familiar greeting is:

write "Hello, world!"

The reason for this demonstration of how not to print text is that it demonstrates how the write command
operates. Each of the parameters supplied to the write command is printed directly after the one before it. In
the second example a single parameter containing both a space and comma is printed.

As with all other JACL commands, any single parameter that contains spaces must be
enclosed in quotes. Failing to do this is a common cause of error.

Screen Display 41

Special Characters

When printing text, the write command recognises the following special characters:

Character Output

^ A caret will be translated into a newline.

~ A tilde will be translated into a double quote.

To print the first two special characters (^ and ~) literally, the words caret and tilde should be used as
parameters of a write command.

Below is an example of the use of the above special characters:

write "~Hello,~ said the boy.^"
write "~Hello,~ said the girl in reply.^"

Each of these write commands prints a single parameter enclosed in quotes and together will display:

"Hello," said the boy.

"Hello," said the girl in reply.

Printing the Value of Variables

If the value of a variable is to be printed, as opposed to verbatim text, the name of the variable must be entered
as a separate parameter that is not enclosed in double quotes. For example, consider the following line from
the +score function of the standard library, a write command with five parameters:

write "Your score is " score "% in " total_moves " moves.^"

The output of this five parameter command will vary depending on the current value of the two variables
being printed. Typed as the very first command of the game it would display:

Your score is 0% in 0 moves.

Printing the Value of Item Elements

The current value of object and location elements may also be printed using a write command. This is done
by enclosing the name of the element in brackets directly after the object or location label. For example:

write "The dial is set to " dial(status) "Mhz.^"

The elements of each object and location are stored in a sixteen element array (0-15). A number between 0
and 15 can be used between the brackets as an index to the object element rather than it's name. For a
mapping of default element names to index numbers, see the chapter Definitions in Detail. Constants can also
be defined as a way of renaming any given element to a name that more clearly indicates its purpose. For
example:

constant fuel_left 2

{+show_status
set submarine(fuel_left) = 42

The JACL Author's Guide

42 Special Characters

write "FUEL: " submarine(fuel_left) ^
}

This code defines fuel_left as the constant 2, then sets the second element of the object submarine to equal
42. Finally, it uses a write statement to output the current value of submarine(2) by using the constant
fuel_left to improve the readability of the code. This results in the following output:

FUEL: 42

Printing the Names and Descriptions of Objects

As you can see in the file verbs.library, it is a common need to print the short description of the object or
objects that the player referred to in his or her last move. This is done using the integer variables noun1 and
noun2. When used as parameters of a write command, these variables may be followed by either a {the} or a
{list} macro to display the object's short description. Given the following object:

object wooden_box : small wooden box
 has CONTAINER CLOSED CLOSABLE
 short a "small wooden box"

if the player refers to this box as the first object in their command, then the write command:

write noun1{list}

would display, "a small wooden box", while

write noun1{the}

would display, "the small wooden box".

If you require the output to be capitalised when using these macros, use {The} or {List} instead. For example,
with noun1 still set to the box object:

write noun1{The} " is no good to eat.^"

will display, "The small wooden box is no good to eat."

Sentences Referring to Varying Objects

There are several other macros that may be used with the write command to assist in constructing sentences
that refer to different objects at different times. They are designed to simplify the process of displaying the
correct text for objects based on whether they have the attributes PLURAL, ANIMATE or FEMALE. They
are:

Macro Output

object_label{long} Prints the objects long description.

object_label{that} Prints either the word them if the object has the
attribute PLURAL, him if the object has the
attribute ANIMATE, her if the object has the
attributes ANIMATE and FEMALE, or the word
that if the object doesn't have any of these

The JACL Author's Guide

Printing the Value of Item Elements 43

attributes.

object_label{it}

Prints either the word they if the object has the
attribute PLURAL, he if the object has the attribute
ANIMATE, she if the object has the attributes
ANIMATE and FEMALE, or the word it if the
object doesn't have any of these attributes.

object_label{does}
Prints the word do if the object has the attribute
PLURAL, or the word does if the object doesn't
have the attribute PLURAL.

object_label{doesnt}
Prints the word don't if the object has the attribute
PLURAL, or the word doesn't if the object doesn't
have the attribute PLURAL.

object_label{is}
Prints the word are if the object has the attribute
PLURAL, or the word is if the object doesn't have
the attribute PLURAL.

object_label{isnt}
Prints the word aren't if the object has the attribute
PLURAL, or the word isn't if the object doesn't
have the attribute PLURAL.

object_label{s}
Prints the letter s if the object hasn't got the attribute
PLURAL, or nothing if the object does have the
attribute PLURAL.

object_label{sub}

Prints the word he if the object has the attribute
ANIMATE, she if the object has both the
ANIMATE and the FEMALE attribute, it if the
object has neither the ANIMATE nor the
FEMALE attribute or the word they if the object
being refered to has the attribute PLURAL.

object_label{obj}

Prints the word him if the object has the attribute
ANIMATE, her if the object has both the
ANIMATE and the FEMALE attribute, it if the
object has neither the ANIMATE nor the
FEMALE attribute or the word them if the object
being refered to has the attribute PLURAL.

Printing the Value of Strings

If the value of a string is to be printed, as opposed to verbatim text, the name of the string variable or string
constant must be entered as a separate parameter that is not enclosed in quotes. For example:

constant game_title "Tutorial Game"
constant game_author "I. F. Author"

{+intro
write "Welcome to " game_title " by " game_author ".^"
}

The output of the +intro function will be:

Welcome to Tutorial Game by I. F. Author.

The JACL Author's Guide

44 Sentences Referring to Varying Objects

The PRINT Command

The print command is the primary way to output plain text. Unlike the write command, the values of
variables, macros or string constants cannot be displayed. In fact the only thing that can be displayed by a
print command is plain literal text. A print command has no parameters. On executing a print command the
interpreter will begin printing all the text from the following line onwards until it encounters a line with a
period (.) as the first non-whitespace character. The lines of text will be displayed verbatim with the following
considerations:

if a line does not end with a caret (^), an implicit space will be printed after the line and the following
line of text will continue straight after it, following the usual word wrapping rules;

1.

if a line ends with a backslash (\) or a caret (^), no implicit space will be added to the line;2.
a vertical bar will be translated into a space to allow formatting such as paragraph indenting to be
done.

3.

Below is an example of the print command in action (note that the colon after the word print is optional
whitespace):

{+intro
clear
print:
 This text will be printed to the screen and
 word wrapped in the appropriate places.
 The backslash at the end of this line will prev\
 ent an implicit space being printed as will
 the caret at the end of this line.^
 ||These two vertical bars will allow this line
 to be indented two spaces.^
.
}

The LOOK Command

The look command will print the long description of the current location and any visible objects that are in the
current location. A look command is executed implicitly by the JACL interpreter whenever a description of
the player's current location is required. This is at times such as when then player moves into a location for the
first time or restores a saved game.

If the player has set the game to verbose mode (DISPLAY_MODE = 1), locations will not be
given the attribute VISITED.

The very first thing the look command will do is remove the attribute VISITED from the current location. It
will then execute the global function +before_look. If this function exists, and returns true, nothing more is
done. If it does not exist, or returns false, the function +title will be executed. This function is an opportunity
to print extra information that is potentially relevant to all locations. For example, the +title function in
frame.jacl tests if the player is currently sitting down and displays the text "(sitting)". It is also common to
add the following line to the top of +title to give each location description a title:

write here{The} ^

The JACL Author's Guide

The PRINT Command 45

Next the look function associated with the current location is executed. After this has finished, the interpreter
will display the text supplied by the long property for each object that is in the current location and doesn't
have a mass of scenery.

If the long property of an object is set to function, that function will be executed. This is useful for
descriptions that are either too long to fit in a single line of code or change during the course of the game. If
the long property is not set to function, the property text is displayed verbatim.

The final step in the process is that the global function +after_look is executed.

It is a convention to have a look command at the end of the +intro function so the player can see where they
are and what objects are nearby when the game begins.

The MORE Command

The more command will print a message and then wait for the player to press a key before continuing. The
message to print is passed as the only parameter of a more command. If no message is provided, the message
[MORE] is used as a default. Below is an example of using the more command with a custom message:

more "Hit any key to continue"

The JACL Author's Guide

46 The LOOK Command

Glk and Multimedia
Glk is a portable application programming interface (API) for applications, like JACL, with a predominantly
text-based user interface. By communicating with this API, JACL is able to work with a variety of user
interfaces implemented by third parties for a variety of platforms. The Glk specification was written by
Andrew Plotkin, and many thanks to him for having done so. Of equal importance are the various
implementations of the Glk specification.

So what does all this mean? The Glk specification defines a set of multimedia functionality that the native
console version of JACL does not provide. Currently JACL can be compiled using WindowsGlk by David
Kinder and Gargoyle by Tor Andersson. Many thanks to both these gentlemen for writing their libraries and
assisting in the porting of JACL to use them. The commands detailed below are available for use by a JACL
interpreter that is compiled with either WindowsGlk or Gargoyle. In the standard Unix distribution, the JACL
interpreter is also compiled with GlkTerm. GlkTerm is a Glk library written by Andrew Plotkin using ncurses.
GlkTerm does not support graphics or sound. The multimedia commands detailed in this chapter will be
ignored without error by interpreters that do not support multimedia.

If you would like to have your game behave differently is certain Glk features are support by the interpreter,
you can test whether the integer constants graphics_supported, sound_supported and timer_supported are
set to true or false.

Graphics, sounds and timers can also be turned off from within your game by setting the integer variables
graphics_enabled, sound_enabled and timer_enabled to false.

Some of the text for this chapter has been cheerfully stolen from the Glk specification. The full Glk
Specification can be read at http://www.eblong.com/zarf/glk/.

Blorb Files and the bjorb Utility

All sound and image files are made available to a Glk interpreter by placing them in a Blorb file with the same
base name as the game. For example, the game grail.jacl will look in the file grail.blorb for any sounds or
images required.

Blorb is a second specification written by Andrew Plotkin specification for a common format for storing
resources associated with interactive fiction games. There are many tools available for creating Blorb files. A
program called bjorb is included in the JACL package that is a slightly modified version of the utility blc. blc
is part of the iBlorb suite developed by Ross Raszewski. Many thanks to Ross for both his original
development effort and the permission to include this program in the JACL package. Information about iBlorb
can be found at http://www.trenchcoatsoft.com/projects.html. The full Blorb Specification can be read at
http://www.eblong.com/zarf/blorb/.

The utility bjorb creates a blorb file with the help of a .blc control file. This control file is a plain text file that
specifies the sounds and images to include in the blorb file. Each line in a .blc control file describes one chunk
of the Blorb file, and has the following format:

Use IndexNumber Type File

Use is the usage of the resource and can either be Pict or Snd.

IndexNumber is the number you will use to refer to this resource in your program.

Glk and Multimedia 47

Type is the resource type. This can be either JPEG, PNG, FORM (Aiff), OGGV or MOD.

File is the name of the file to be included as this resource.

Below is an example .blc file called example.blc:

Pict 1 PNG /images/title.png
Snd 3 MOD /music/theme.mod
Snd 4 OGGV /sounds/explosion.ogg
Pict 2 JPEG /images/car.jpg

To create a Blorb file from this .blc file, use the bjorb utility in the following manner:

bjorb example.blc example.blorb

This command will create the Blorb file example.blorb that will be automatically read by the game
example.jacl. When the bjorb utility runs, it will output some JACL code that will create a constant for each
image or sound. If you find these convenient you can cut and paste this code into your game.

For example, when reading this .blc file:

Pict 1 PNG images/blackjack.png
Pict 2 PNG images/chip25.png
Pict 3 PNG images/chip50.png
Pict 4 PNG images/chip100.png
Pict 5 PNG images/club.png
Pict 6 PNG images/diamond.png
Pict 7 PNG images/spade.png
Pict 8 PNG images/heart.png

bjorb will produce the following output:

bjorb 1.0 (Apr 30 2008) by Stuart Allen, based on
Blorb Packager Version .5b by L. Ross Raszewski

CONSTANTS FOR RESOURCES IN BLORB FILE
constant IMAGE_blackjack 1
constant IMAGE_chip25 2
constant IMAGE_chip50 3
constant IMAGE_chip100 4
constant IMAGE_club 5
constant IMAGE_diamond 6
constant IMAGE_spade 7
constant IMAGE_heart 8

If you pass only a single command-line argument to bjorb, that argument will be used as the base name for
both the .blc control file and the .blorb output file. As an example, the following two commands are
equivalent:

bjorb example

bjorb example.blc example.blorb

The JACL Author's Guide

48 Blorb Files and the bjorb Utility

The IMAGE Command

The image command is used to display one of the images stored in the game's blorb file. The image to display
is specified using its index in the blorb file. The index can be supplied either as a literal integer or any JACL
container that resolves to an integer. The index of the image can optionally be followed by an alignment. The
possible alignments are:

Alignment Description

up
The image appears at the current point in the text, sticking up. That is, the bottom edge of the
image is aligned with the baseline of the line of text.

down
The image appears at the current point, and the top edge is aligned with the top of the line of
text.

centre
The image appears at the current point, and it is centered between the top and baseline of the
line of text. If the image is taller than the line of text, it will stick up and down equally.

left
The image appears in the left margin. Subsequent text will be displayed to the right of the
image, and will flow around it -- that is, it will be left-indented for as many lines as it takes
to pass the image.

right The image appears in the right margin, and subsequent text will flow around it on the left.

The two "margin" alignments require some care. To allow proper positioning, images using left and right
must be placed at the beginning of a line. That is, you may only call image (with these two alignments) if you
have just printed a newline, or if the screen is entirely empty. If you margin-align an image in a line where
text has already be printed, no image will appear at all.

The following code demonstrates the image command:

constant IMAGE_house 4

{+display_image
DISPLAY IMAGE 4 WITH THE TOP OF IMAGE LEVEL WITH TOP OF THE TEXT
image IMAGE_house

DISPLAY IMAGE 6 WITH THE BOTTOM OF IMAGE LEVEL WITH TOP OF THE TEXT
image 6 up
}

The SOUND Command

The sound command is used to play one of the sounds stored in the game's blorb file. The sound to play is
specified using its index in the blorb file. The index can be supplied either as a literal integer or any JACL
container that resolves to an integer.

The index of the sound can optionally be followed by a channel to play the sound on. There are four available
channels: 0, 1, 2 and 3. If no channel is specified, channel 0 is used as the default.

If a channel is specified, it can be followed by the number of times to repeat the sound. If -1 is specified as the
number of times to repeat the sound, the sound will keep playing until it is manually stopped using the stop
command. If no number of times to repeat the sound is specified it is played once.

The JACL Author's Guide

The IMAGE Command 49

The following code demonstrates the sound command:

constant SOUND_rain 6
constant SOUND_thunder 7
integer AUDIO_CHANNEL 2

{+play_sound
PLAY SOUND 7 ON CHANNEL 0 ONCE ONLY
sound SOUND_thunder

PLAY SOUND 6 ON CHANNEL 2 ONCE ONLY
sound SOUND_rain AUDIO_CHANNEL

PLAY SOUND 6 ON CHANNEL 3 FOUR TIMES
sound 6 3 4

PLAY SOUND 6 ON CHANNEL 3 INDEFINITELY
sound SOUND_rain 3 -1
}

The VOLUME Command

The volume command is used to set the volume of a sound channel. The volume is specified as an integer
between 0 and 100. A second, optional parameter can be used with the volume command specifying which
sound channel to set the volume for. If this parameter is omitted the volume is set for channel 0.

The following code demonstrates the volume command:

{+set_volume
SET CHANNEL 0 TO FULL VOLUME
volume 100

SET CHANNEL 2 TO HALF VOLUME
volume 50 2
}

The STOP Command

The stop command simply stops the sound being played on the specified sound channel. The channel to stop
is specified as an integer between 0 and 3. If no channel is specified channel 0 is stopped by default.

The following code demonstrates the stop command:

{+stop_sound
STOP THE SOUND PLAYING ON CHANNEL 0
stop

STOP THE SOUND PLAYING ON CHANNEL 2
stop 2
}

The TIMER Command

The timer command tells the interpreter to call the function +timer every so many milliseconds, regardless of
whether the player types a command or not. The number of milliseconds to wait between each function call is

The JACL Author's Guide

50 The SOUND Command

specified as the timer command's only parameter. If you specify a time of 0 to a timer command, the timer
will be turned off.

It is important to be aware that not all interpreters will support the timer command, so no
processing essential to the game should be performed within the +timer function. Periodically
playing sound effects that are not essential to the game is an example of valid use of this
functionality.

Below is an example of the timer command being used:

{+intro
...
SET THE TIMER TO EVERY TEN SECONDS
timer 10000
...
}

{+timer
if here has OUTDOORS
 # PLAY THE THUNDER SOUND ON CHANNEL 3 SO
 # IT DOESN'T INTERFERE WITH OTHER SOUNDS
 play SOUND_thunder 3
endif
}

The STYLE Command

The style command is used to output either ANSI terminal codes or set Glk styles depending on the interpreter
being used. The style command accepts a single string containing the name of the style to set. Here is an
example of using the style command to output some bold text:

style bold
write "This is bold.^"
style normal

Below is a table showing styles available in JACL and the Glk styles they map to:

JACL Style Glk Style

bold style_Emphasized

note style_Note

input style_Input

header style_Header

subheader style_Subheader

reverse style_Note

pre style_Preformatted

normal style_Normal

The Status Window

The status window at the top of the screen is implemented as a Glk window, and is therefore covered here. It
is possible to have no status window at all, use the built-in, default status window or design a custom one

The JACL Author's Guide

The TIMER Command 51

yourself. The vertical height of the status window in rows is defined by using the constant status_window. If
the constant status_window is set to 0, no status window will be created. For example, to create a status
window that is three rows tall, define the following constant:

constant status_window 3

The status window is always created using a fixed-width font and its current dimensions can be read at any
time using the values of status_width and status_height. Although status_height will most often be equal to
status_window (unless status_window exceeded the available space), status_width will change as the
player's resizes the game window.

If a status window is created, the interpreter will attempt to call the global function +update_status_window.
If this function exists, it will be executed and must contain code to draw the contents of the status window. If
this function doesn't exist, the interpreter will use internal code to generate a standard interactive fiction status
line. This consists of a single line with the name of the current location against the left side and the number of
moves and current score against the right.

If the function +update_status_window does exist, the current Glk stream is set to that window before it is
called so all write or print commands will output to it. The window is also first cleared of all previous
contents and the cursor is positioned in the top left corner.

The location at which to start printing text within the status window is changed using the cursor command.
The cursor command is passed two integer parameters, the row and column to move the cursor to. Counting
starts in the top left corner at 0, 0. For example, to move the cursor to the far right hand column of the second
row, use the command:

cursor status_width 1

Often when positioning text it is important to know the length of the string you are going to print. This is
determined using the length command. The length command requires two parameters: the container to hold
the length of the string and the string itself. For example, the following command determines the length of the
string constant game_title and stores the result in the variable index:

length index game_title

Putting this all together, it is possible to display the title of the game centred in a single-line status window
using the following code:

constant game_title "The Unholy Grail"

constant status_window 1

integer index
integer offset

{+update_status_window
set offset = status_width
length index game_title
set offset - index
set offset / 2
cursor offset 0
write game_title
}

The JACL Author's Guide

52 The Status Window

Status windows are often displayed using reverse text to make it clearly stand out from the main window. This
is achieved using the following command:

style reverse

This command, however, will only reverse the text output, not the whole window. In order to achieve the
effect of an entirely reversed window, blank spaces will need to be printed wherever there isn't any other text.
The easiest way to do this is to print entire rows of blank spaces then move the cursor back to print over the
top. The padstring command exists to help with this process. The padstring command takes three
parameters. The label of the string to fill, the text to fill the string with and an integer specifying the number
of times to copy the text into the string. To print a blank line in the status window, the text that will by copied
is a single space in quotes (" ") and it will be copied status_width times. The code below is an expanded
version of the above function that prints the title of the game centred in an inverse status window:

constant game_title "The Lovely Test Game"
string status_text

integer index
integer offset

constant status_window 1

{+update_status_window
style reverse
padstring status_text " " status_width
write status_text
set offset = status_width
length index game_title
set offset - index
set offset / 2
cursor offset 0
write game_title
}

As a final example of a +update_status_window function, below is the JACL code to replicate the internal
status line produced if no custom function is provided:

string status_text

integer index

constant status_window 1

{+update_status_window
style reverse
padstring status_text " " status_width
write status_text
cursor 1 0
write here{The}
setstring status_text "Score: " score " Moves: " total_moves
set offset = status_width
length index status_text
set offset - index
set offset - 1
cursor offset 0
write status_text
}

The JACL Author's Guide

The Status Window 53

The UPDATESTATUS Command

The interpreter will call the +update_status_window function after each of the player's moves and when the
game window is resized. If you require the status window to be updated at other times such as in a loop or
from the +timer function, use the updatestatus command. The updatestatus command takes no parameters.
It sets the current output stream to the status window and clears the status window before calling the function
+update_status_window. When +update_status_window has finished executing the current output stream is
set back to the main window.

It is not possible to call the +update_status_window directly. It will be called by the interpreter
automatically after each of the player's moves or when the window is resized. If you do require the
window to be updated at other times use the updatestatus command. If you call
+update_status_window directly the current output stream will not be set to the correct window.

The JACL Author's Guide

54 The UPDATESTATUS Command

Flow Control

The IF, IFALL and ENDIF Commands

An if command tests whether an expression is true or false for the purpose of selectively executing code. If the
expression is true, execution will continue from the next line. If the expression is false, execution will
continue from the line after the matching endif or else command. If no endif command is found by the end of
the function, the function will terminate normally with an implicit return true. An if command must be of the
format:

if LeftValue test RightValue [LeftValue Test RightValue]...

In an if command, each set of three parameters (two values and a test), is called an expression. Each
expression is evaluated to equal either true or false. If more than one expression is supplied, the entire
statement is considered be true if any one of the expressions is true — a logical OR. The ifall command has
the same format as an if command except the entire statement is only considered to be true if all of the
expressions are true — a logical AND.

The following table lists the possible tests that can be used with an if or ifall command when the left and right
values are both either an integer, an integer constant, an object or the word random. For more information on
constants and random see the chapter on Internals.

Each object defined is assigned a unique number when the game is loaded. In a set, if or ifall
command, an object's label is substituted for this number. Objects are numbered in the order
they appear in the game file starting at one.

Test Description

= or == This tests if the left value is equal to the right value.

> This tests if the left value is greater than the right value.

< This tests if the left value is less than the right value.

>= or => This tests if the left value is equal to or greater than the right value.

<= or =< This tests if the left value is equal to or less than the right value.

!= or <> This tests if the left value is not equal to the right value.

The following are the possible tests that can be used with an if command when the left and right values are
both set to an object:

Test Description

grandof This tests if the left object is the grand parent of the right object.

!grandof This tests if the left object is not the grand parent of the right object.

When an object is placed inside another object, which is then placed inside yet another object, the last object
is said to be the grand parent of the first. This is the case no matter how many intermediate objects there are.

The following are the possible tests that can be used with an if command when the left value is a location and
the right value is an object:

Flow Control 55

Test Description

locationof This tests if the left value is the location of the right object.

!locationof This tests if the left value is not the location of the right object.

The difference between grandof and locationof is that, for example, if a key is put on a keyring, which is put
in a box, which is put into a bag, and the bag is in a room called "beach", 'locationof key' would refer to the
beach, but 'grandof key' would refer to the bag.

The following are the possible tests that can be used with an if command when the left value is an object and
the right value is an attribute. For more information see the chapter on Attributes.

Test Description

has This tests if the object has the specified attribute set

hasnt This tests if the object hasn't the specified attribute set

The following are the possible tests that can be used with an if command when the left value is an object and
the right value is one of the words *here, *held, *present or *anywhere. These words have the same
meanings when used in an if statement as in a grammar statement. For more information see the section on
Grammar Statements.

Test Description

is This tests if the object is in the specified scope.

isnt This tests if the object isnt in the specified scope.

To help clarify, here are some examples of the various types of if commands:

if beach locationof bucket
if sand grandof bucket
if TOTAL_MOVES >= 42
if glove has WORN
if guard isnt *present : id_card has WORN
if noun1 = sword : noun1 = knife
if sword(parent) = field

It is possible to nest if statements. Nesting involves placing a second if command before the matching endif
command of a first. The end result of this is that the code between the second if command and its matching
endif command will only be executed if both statements are true — a logical AND.

The IFSTRING Command

An ifstring command is used to compare two strings of text. If the string of text is to contain any spaces, it
must be enclosed in double quotes. An ifstring command must use the following format:

ifstring text test String [text Test String]...

Below is a list of the possible tests:

Test Description

== or = This tests if the first string equals the second string

The JACL Author's Guide

56 The IF, IFALL and ENDIF Commands

!= or <>
This tests if the first string doesn't equal the second
string

contains
This tests if the first string contains the second
string

!contains
This tests if the first string doesn't contain the
second string

Below are some examples of the ifstring command being used.

ifstring string_arg[0] contains "help"
ifstring command[0] == "take"

The IFEXECUTE Command

The ifexecute command works in a similar manner to the call command (see the chapter on Functions of more
information.) If the function specified after the ifexecute command exists and does not return false, executing
will continue from the line after the ifexecute command. If the function being called does not exist or returns
false executing will continue from after the matching endif or else command.

This command is normally only used by library code to test if the game author has provided some specific
associated function and to perform some sort of default action if not. For example:

ifexecute "here.look"
 # ASSOCIATED FUNCTION PROVIDED, DO NOTHING
else
 # NO ASSOCIATED FUNCTION, PERFORM DEFAULT
 execute "+look"
endif

If the ifexecute command is true, in other words, a look function associated with the player's current location
exists and does not return false, the block of code below it will be executed. As the associated look function
has already performed any required action, this block contains only a comment. If this function did not exist
or returned false the function +look would be executed.

The ELSE Command

The code following an else command is executed only if the matching if command was false. If the matching
if command was true, execution will continue from the line after the matching endif command. For example:

if mulder has DEAD
 write "Clamminess on your lips.^"
else
 write "He looks quite surprised to say the least.^"
endif

Nested if commands may also make use of the else command. This is demonstrated in the following section of
code taken from the +take_all function:

loop
 if noun3 childof noun1
 if noun3(mass) < heavy
 if noun3 hasnt LIQUID

The JACL Author's Guide

The IFSTRING Command 57

 if noun3(mass) <= player(info)
 if TURN_WORKED = true
 set TOTAL_MOVES + 1
 execute "+eachturn"
 endif
 execute "+take_routine"
 set INDEX + 1
 else
 write "You are carrying too much to take "
 write noun3{the} .^
 set INDEX + 1
 endif
 else
 write noun3{The} " run" noun3{s} " through "
 write "your fingers.^"
 set INDEX + 1
 endall
endloop

In the above code, the block of code after the first else command is executed if the matching if command
above it:

if noun3(mass) <= player(info)

is false. This line of code will not get executed, however, if the line:

if noun3 hasnt LIQUID

is false as execution will have already jumped to after the second else command.

The LOOP and ENDLOOP Commands

The loop command is used to iterate through all the objects (and locations) defined in the game. The loop
command takes a single argument being the integer variable to use as a pointer to the current object during
iteration. If a loop command is executed with no parameters, noun3 is used as the default variable. When the
loop command is executed, iteration starts with the variable being set to 1 (the first object or location in the
game file). When the matching endloop command is executed the variable is incremented to point to the next
object or location and execution continues from the first line after the original loop command. The loop will
end when the endloop command is executed with the iteration variable already pointing to the last object or
location. When the loop ends, execution continues from the first line after the endloop command. For
example, the following code will output the short description of each object and location as a list:

{+print_objects
loop
 write noun3{List} ^
endloop
}

As another example, this function will output all the children of the object passed as an argument to it, using
the variable POINTER as the iteration variable:

integer POINTER

{+print_children
write "Children of " arg[0]{the} ":^"
loop POINTER

The JACL Author's Guide

58 The ELSE Command

 if POINTER(parent) = arg[0]
 write " " POINTER{the} ^
 endif
endloop
}

It is not legal to nest loops unless the inner loop is within a function that is called from within the outer loop.
To return out of a loop early you can either return from the currently executing function or set the iteration
variable to point to the last object or location manually. For example, to return out of a loop after the fifth
object, use the constant objects like this:

loop
 write noun3{The} ^
 if noun3 = 5
 # SET THE CONTAINER noun3 TO POINT TO THE
 # LAST OBJECT OR LOCATION SO THAT THE
 # LOOP WILL STOP ITERATING
 set noun3 = objects
 endif
endloop

The index of the last object or location (which is also the number of object and locations in the game) is stored
in the constant objects.

The REPEAT and UNTIL Commands

A repeat... until loop allows you to repeat a section of code until a specified condition is true. The expression
or expressions to be tested should follow the until statement, using the same syntax as an if statement.

The following is an example of a repeat... until loop:

set INDEX = 10
repeat
 write "DON'T PANIC! "
 set INDEX - 1
until INDEX = 0

loop...endloop loops and repeat...until loops cannot be nested within a single function. It is legal,
however, to place a second loop within a function that is called from within the first loop. For
example:

{+print_objects
set INDEX = 10
loop noun3
 write noun3{the} ^
 execute "+print_children"
endloop
}

{+print_children
loop noun4
 if noun3 grandof noun4
 write " " noun4{the} ^
 endif
endloop
}

The JACL Author's Guide

The LOOP and ENDLOOP Commands 59

Note that it is legal, however, to nest a repeat loop inside an object loop or vice versa.

The WHILE and ENDWHILE Commands

As a repeat loop will always happen at least once, if there is any chance that a loop should happen zero times,
a while loop must be used. A while loop performs its test first, then executes the code following the
expression if it evaluates to true. On reaching an endwhile command it will return to the matching while
command and re-evaluate the expression. When the expression eventually evaluates to false, execution will
continue from the line after the endwhile command. For example, the following function will output the value
of the passed arguments:

{+arg_values
set INDEX = 0
while INDEX != @arg
 write "Argument" INDEX " = " arg[INDEX] ".^"
 set INDEX + 1
endwhile
}

The RETURN Command

return or return true
The command return will stop execution of the current function and return to the next line after the
corresponding execute command in the calling function. If the function containing the return command was
called internally by the JACL interpreter, processing will continue, eventually returning to the command
prompt for the player's next move.

return false
The command return false will stop execution of the current function just like a return command. When it
returns, the JACL interpreter will behave as though the function it returned from did not exist, and was
therefore not executed at all. This will, in the case of calls originating from grammar statements, cause the
default action to occur.

The following is a demonstration of the use of return false:

object bond: james bond

{ask_about_bomb
if bomb(parent) = limbo
 return false ;The function +ask_about will now be
 ; executed as though this function did
 ; not exist.
endif
write "~I'm glad you asked...~^"
}

This is a common technique in JACL games. Once the player has typed a command that refers to an object,
the interpreter will attempt to execute the appropriate function that is associated with that object. For example,
if the player was to type ask bond about the bomb, the interpreter would attempt to execute the function
ask_about_bomb that is associated with the object bond (the function above). If this function does not exist,
the function +ask_about will be called instead. When a return false command executed, the interpreter will
behave as though the local function containing the return false does not exist. In essence, this allows a
function to override the default result of a verb under some conditions and accept it under others.

The JACL Author's Guide

60 The REPEAT and UNTIL Commands

Changing Data
It is often desireable to change the value of data that is defined when the game is first loaded. This is achieved
using the set command for integers, objects and locations (see Typecasting below), and the setstring
command for text.

The SET Command

Any set command must be of the following format:

set container operator value [operator value...]

The set command enables you to modify the current value of the specified container. A container is either an
object element (see the chapter Definitions in Detail for more information), a variable or an item pointer such
as noun1 or here. The value can be an integer, integer constant or any other container whose value you wish
to copy.

The following is a list of operators that can be used with the set command:

Operator Description

= Set the value of the specified container to the specified value.

+ Add the specified value to the current value of the specified container.

-
Subtract the specified value from the current value of the specified
container.

/ Divide the current value of the specified container by the specified value.

* Multiply the current value of the specified container by the specified value.

%
The modulo operator calculates the remainder value of the specified
container when divided by the specified value.

The following example demonstrates how to add 7 and 8 then divide the result by 5:

integer TEMP

{+maths
set TEMP = 7 + 8 / 5
}

This line of code can be read as a container to apply the operations to followed by groups of two parameters:
an operator and a value. In this case the three operations are:

make TEMP equal to 71.
add 8 to TEMP2.
divided TEMP by 53.

Although all JACL commands require whitespace between each parameter, it is especially easy to
forget the space between the container and the operator or the operator and the value. It is, of
course, valid to have a command such as:

set BANK_BALANCE = -42

Changing Data 61

The set command also has the ability to use the current value of a string as the name of the
container or value being referred to. For example, if an integer variable called counter was
defined, its value could be set to 1 using the following code:

integer counter 0

{+modify
setstring indirection "counter"
set indirection = 1
}

This technique can be particularly useful when the need arises to pass a reference to an array as a
function argument.

Type Casting

The JACL language allows the definition of complex types such as objects and locations at load time, but
once the game is running, the only types that can be modified are integers and strings. When objects and
locations are created they are assigned an integer value. The first object or location defined is given the
number one, the remainder are numbered sequentially in the order they appear in the source file. For the
purposes of numbering there is no distinction between objects and locations. Because of this, it is possible to
use an integer variable wherever an object label is expected. For example:

integer VARIABLE

{+code
set VARIABLE = small_frog
set noun4 = VARIABLE
set noun4 + 1 ; NOTE: noun4 will now equal the item defined
 ; directly after small_frog in the game file.
set lantern(status) = noun1(parent)
set max_rand = objects
set sword(parent) = random
}

This code sets an integer variable to the index of the object small_frog. It then sets the internal object pointer
(another integer variable) noun4 to that value. This pointer is then incremented to point to the object or
location that is definied directly after the small_frog. After that, the current parent of the object pointed to by
noun1 is stored in the status element of the object lantern. Finally, max_rand is set to the constant objects
(the number of objects and locations in the game), and the parent of the object sword is randomly set to one of
the object or locations from in the game.

As you can see, all these variables, object elements, object labels, object pointers and constants simply resolve
into integers and can be used interchangeably.

The only real potential danger in the above examples it that of setting one of the object pointers to
a value less than one, or greater than the internal number of the last object. The index of the last
object or location (which is also the number of object and locations in the game) is stored in the
constant objects.

The JACL Author's Guide

62 The SET Command

The SETSTRING and ADDSTRING Commands

The setstring command is in many ways similar to the write command. Where a write command can take a
list of parameters and will output the result to the screen, the setstring command can take an identical list of
parameters and store the result in a string. The first parameter of a setstring command is a string to store the
resulting output in. All other parameters constitute the text to be stored. Any previous contents in a string are
overwritten by a setstring command. Below is an example of the setstring command in action:

string buffer "empty"

{+some_function
setstring buffer "You are currently in " here{the} " on turn " total_moves ".^"
}

The addstring command works in a similar way except it does not erase the current contents of the string
being written to.

The PADSTRING Command

The padstring command takes three parameters. The label of the string to fill, the text to fill the string with
and an integer specifying the number of times to copy the text into the string. This command primarily exists
to assist with presentation within the status window. For example, to print a blank line in the status window,
the text that will by copied is a single space in quotes (" ") and it will be copied status_width times. The code
below demonstrates creating a string called status_text that contains enough spaces to fill a line in the status
window:

string status_text

{+update_status_window
padstring status_text " " status_width
}

The JACL Author's Guide

The SETSTRING and ADDSTRING Commands 63

The JACL Author's Guide

64 The PADSTRING Command

Movement

The MOVE Command

The move command is used to transport an object within your game world and uses the format:

move object to destination

The object can be any object label, object pointer or the integer index of an object, while the destination can
be any item label, item pointer or the integer index of an item. In essence, the move command will set the
parent element of the object to be equal to the destination. In addition to this, it performs several functions
relating to the mass of the object that is being moved. For example, the command:

move note to box

will, in addition to moving the note to be a child of the box, automatically increase the capacity property of
the object (if any) that the note was in before the move command, and decrease the capacity property of the
box. This reflects the decreased burden on note's previous parent and an increase in the box's contents in
accordance with the note's mass. The following code is equivalent to the above move command:

set noun4 = note(parent)
set note(parent) = box
set noun4(capacity) + note(mass)
set box(capacity) - note(mass)

As you can see, the move command is by far the easier option.

If the capacity property of the destination object ends up a negative number, the move command
will still successfully complete. It is therefore wise to test for this before issuing a move command.
Below is an example of this from the library function +insert_in:

if noun2(capacity) < noun1(mass)
 write "There is not enough room in " noun2{the}
 write " for " noun1{the} .^
 set TIME = false
 return
endif

The TRAVEL Command

A travel command must be of the format:

travel direction

The travel command is used to move the player from one location to another. It simulates the player moving
in the specified direction under their own steam. The player can also be moved to a different location by
directly setting their parent to equal the new location. This, however, does not in perform any tests as to
whether this movement is physically possible. The travel command is normally only ever used by the
direction verbs in the library. One of the directions north, south, east, west, up, down, in, out, northeast,
northwest, southeast or southwest must be specified as its single parameter.

Movement 65

Before the move actually occurs, two functions are executed. If either of these functions exists, and does not
return false, the move will be prevented from occurring. The first of these functions is the movement function
associated with the location the player is attempting to move out of. The second, executed if this first function
does not exist or issues a return false command, is the global function +movement. Before either of these
functions are called the integer variable compass is set to the direction the player is travelling in and the
integer variable destination is set to the location the player is travelling into.

For example, if the player was in a location called hut and typed the command go north, the integer variable
destination would be set to the location they are attempting to move into, say clearing, and the integer
variable compass would be set to the direction he or she is attempting to move in, in this case north. Both of
these variables would be set before the function movement that is associated with the location hut is called.

Two common uses of the movement function associated with a particular location are to replace the standard,
"You can't go that way," message or to add some text describing the journey from one location to another. For
example:

location hut : hut
 short the "hut"
 north clearing

{movement
if COMPASS != north
 print:
 The only exit from here is the front door
 to the north.^"
 .
 return true
endif
print:
 You step out into the sun light, taking a
 moment for your eyes to adjust.^
.
return false
}

Firstly, this function checks if the player is attempting to go in a direction other than this location's only exit.
If this is the case, an appropriate message is displayed and a return true command is executed. It is this
return command that prevents the normal message from being displayed. If the player is attempting to travel
north, a short description of the journey is displayed and a return false is executed. It is this return false
command that tells the interpreter that the move should continue as normal.

Another common use of an associated movement function is to simply remind the player of the available
exits when they attempt to travel in an invalid direction. For example:

{movement
if destination = nowhere
 print:
 The only exit from here is to the south.^
 .
 return true
endif
return false
}

This function would display the message "The only exit from here is to the south." whenever the player
attempt to travel in a direction that is currently set to nowhere.

The JACL Author's Guide

66 The TRAVEL Command

Moving Non-player Characters

The file utils.library contains several functions to help simulate the natural movement of objects, such as a
non-player character walking around. In addition to moving the object, these functions will display the
appropriate message required to announce the movement to the player.

The function called from your game to initiate the movement is +push_object. This function is passed two
arguments: the object to be moved and the direction to move the object in. The direction passed is one of the
following integer constants:

Constant name Integer value

north 0

south 1

east 2

west 3

northeast 4

northwest 5

southeast 6

southwest 7

up 8

down 9

in 10

out 11

Below is an example of the procedure for making an object move from one location to another:

execute +push_object<security_guard<north

A message will be displayed to the player informing him or her of the object's movement if the player is in
either the location the object is moving out of or the location the object is moving in to. If the location the
player is in has the attribute DARKNESS, the message "You hear footsteps nearby." is displayed.

The DIR_TO and NPC_TO Commands

The dir_to and npc_to commands calculate the first direction to move in when travelling from one location to
another. The dir_to command will calculate a route that only passes through locations that have the attribute
KNOWN, while the npc_to command will use all locations.

Both commands use the following syntax:

dir_to <Container> <From Location> <To Location>

When this command runs, it will store the value of the first direction to move in inside the specified container.
This container can be an integer variable or an object element. The value stored is one of the direction

The JACL Author's Guide

Moving Non-player Characters 67

constants from the table above.

For example, given the map below, the command:

dir_to INDEX clearing ledge

would put the value north (0), into the variable INDEX as this is the first direction that must be travelled in
from the location clearing to get to the location ledge.

If the dir_to command is unable to calculate a route between the two locations, -1 will be placed into the
container.

The dir_to command is not able to determine if an exit is only temporarily blocked. If an
exit is set to nowhere due to a door being closed between the two locations specified, -1 will
be returned. If you wish to avoid this limitation you will need to temporarily open all doors
that can be opened by the player, calculate the route and then return them to their initial
state.

The JACL Author's Guide

68 The DIR_TO and NPC_TO Commands

Special-Purpose Commands

The POINTS Command

The points command is used to award points to the player and must be followed by a single integer indicating
the number of points to be awarded. The awarded points will be added to the integer variable score. Below are
two examples of the points command being used:

points 10
points gold(points)

When the points command is used the following message will be displayed to the player:

[YOUR SCORE JUST WENT UP BY n POINTS]

The PROXY Command

The proxy command is used to issue an in-game move as though it was typed by the player and must be of
the following syntax:

proxy Move

The specified Move may consist of multiple parameters, built up from plain text, variables, constants or
macros. When the move is issued by the proxy command, all the normal testing will take place and all usual
messages will be displayed. The most common use for the proxy command is to translate one command into
another similar command. For example, sometimes two different commands can be mapped to the same
function:

grammar put *held in *here >insert
grammar insert *held in *here >insert

With the above two grammar statements only the verb is different so mapping them to the same function is
possible. In some situations, however, this is not possible as the nouns appear in a different order. Below is an
example of how the proxy command can save the day:

grammar look at *here through *held >look_at_through

{+look_at_through

;main function code tied to this syntax

}

grammar look through *held at *here >look_through_at

{+look_through_at
proxy "look at " noun2{names} " through " noun1{names} ; This will cause
 ; the alternate
 ; syntax to be used
}

When the second syntax is used by the player, the only action is to execute a a proxy command. This issues a
command on the player's behalf that matches the first syntax, therefore arriving at the main function with

Special-Purpose Commands 69

noun1 and noun2 pointing to the correct objects.

The macro {names} is almost exclusively used with the proxy command and outputs all of the names of the
object separated by spaces. For example, the following code will issue the command "set safe dial to 42":

object dial : safe dial
 short the "safe dial"

{set
execute +build_command<this<42
}

{+issue_set
proxy "set " arg[0]{names} " to " arg[1]
}

Don't forget to put spaces before and after any macros or variables used in a proxy command.

Trigonometry

JACL provides a set of trigonometric commands to help model a two dimensional space. Each object in JACL
has the integer elements x, y, bearing and velocity. The values of these elements are read and updated by the
following three commands.

The POSITION Command

The position command is used to change an object's x and y elements to simulate it moving on a
two-dimensional grid. The movement that occurs depends on the current values for the object's bearing and
velocity. A position command is simply followed by the label of the object to be moved:

set ship_object(bearing) = 180
set ship_object(velocity) = 100
set ship_object(x) = 500
set ship_object(y) = 500

position ship_object

The above code will set ship_object(x) to equal 500 and ship_object(y) to equal 400.

The BEARING Command

The bearing command is used to calculate the angle from one object to another based on their current x and y
values. A bearing command is followed by a variable to store the calculated angle in, the object to measure
the angle from, then the object to measure the angle to. For example:

bearing INDEX lighthouse ship
write "Bearing from " lighthouse{the} " to "
write ship{the} ": " INDEX " degrees.^"

The JACL Author's Guide

70 The PROXY Command

The above code calculates the bearing from the object lighthouse to the object ship in degrees (0 - 359), and
stores the result in the variable INDEX. This calculation is based on the current values of lighthouse(x) and
lighthouse(y) relative to the current values of ship(x) and ship(y).

The DISTANCE Command

The distance command is used to calculate the distance between two objects based on their current x and y
values. A distance command works in the same manner as a bearing command:

distance INDEX lighthouse ship
write "Distance from " lighthouse{the} " to "
write ship{the} ": " INDEX ^

The above code calculates the distance between the object lighthouse and the object ship and stores the result
in the variable INDEX. This calculation is based on the current values of lighthouse(x) and lighthouse(y)
relative to the current values of ship(x) and ship(y).

The ASKNUMBER AND GETNUMBER Commands

The commands asknumber and getnumber prompt the player to input a number between a particular range
and wait for a response. The only difference between the two commands is that getnumber will continue to
ask the player for a valid response, only returning when a number between the upper and lower limit is
entered. Both of these commands use the following syntax:

asknumber StorageVariable LowerLimit UpperLimit

StorageVariable is the integer variable used to store the number entered by the player. LowerLimit and
UpperLimit indicate the inclusive range of numbers that are acceptable. For example, below is some code that
prompts the player to enter a number between 1 and 5 (inclusive), and stores the answer in a variable called
RESPONSE:

integer RESPONSE
integer UPPER 5

{+ask_player
...
asknumber RESPONSE 1 UPPER
write "You typed " RESPONSE .^
}

When using the asknumber command, if the player enters an invalid response, -1 will be placed in the
storage variable and the next line of code will be executed.

The GETSTRING Command

The command getstring will prompt the player to enter an arbitrary string of text. The only parameter of a
getstring is the name of the string variable to store the player's response. Below is an example of the use of
the getstring command:

string players_name

{+intro

The JACL Author's Guide

The BEARING Command 71

write "What is your name? "
getstring players_name
write "Hello " players_name "!^"
}

The GETYESORNO Command

The command getyesorno will prompt the player to enter yes or no. It will repeatedly prompt the player to
enter a valid response until they do so. The only parameter of a getyesorno command is the integer variable
used to store the player's response. If the player types yes (or y), the variable will contain the number 1. If the
player types no (or n), the variable will contain the number 0. Below is an example of the getyesorno
command in action:

constant hints 5

{+ask_player
write "Would you like hints?^"
getyesorno player(hints)
if player(hints) = 1
 write "You typed yes.^"
else
 write "You typed no.^"
endif
}

The SAVEGAME and RESTOREGAME Commands

These commands can be used to access the internal functionality to save and restore the current game state.
Both of these commands require a container to be passed as a parameter. This container is used to store the
return code of the command. If the save or restore operation fails, an appropriate error message will be
displayed and the supplied container will be set to false. If the save or restore operation is successful, the
supplied container will be set to true and no message will be displayed. Both commands accept an optional
second parameter that is a string to use as the filename. If this parameter is not supplied the Glk library will
prompt the player to select a file. A common use of these commands is to define the functions +save_game
and +restore_game to override the internal implementation of this functionality. For example:

variable ANSWER
variable RETURN_CODE

{+restore_game
write "Are you sure you wish to restore a saved game?^"
getyesorno ANSWER
if ANSWER = 0
 write "Returning to game.^"
 return
endif
restoregame RETURN_CODE
if RETURN_CODE = true
 print:
 "You cast the spell of time travel and return to the past...^"
 .
endif
}

The ability to supply a filename can be used to either allow the player to supply the filename directly after the

The JACL Author's Guide

72 The GETSTRING Command

save command, or implement a system of auto-saving every tenth move such as this:

{+eachturn
set save_timer = total_moves
set save_timer % 10
if save_timer = 0
 set save_count + 1
 setstring filename "autosave"
 addstring filename save_count
 addstring filename ".sav"
 savegame RETURN_CODE filename
endif

The ENDGAME Command

The endgame command stops the current game and provides the player with the following options:

Please type S to start again, R to restore, U to undo or Q to quit:

The TERMINATE Command

The terminate command will directly initiate the termination of the JACL interpreter.

The UNDOMOVE Command

The undomove command will take the game back to the state it was in prior to the player's last command.

The JACL Author's Guide

The SAVEGAME and RESTOREGAME Commands 73

The JACL Author's Guide

74 The UNDOMOVE Command

Attributes
Attributes are a set of qualities that an item either has or hasnt. An item can have none of the possible
attributes, all of the possible attributes, or any combination in between. Initial attributes are given to an object
in its definition using the keyword has (see the chapter Definitions in Detail), while they are given and taken
away during the course of the game using the ensure command. Many of the attributes do not have any
pre-determined purpose and may be used by the author at will. The best way to determine the full effect of
any given attribute is to search for it in the verbs.library file.

The ENSURE Command

The ensure command is used to change which attributes an item has and uses the following syntax:

ensure Item has/hasnt Attribute

There is nothing really tricky about the ensure command. You are either giving an item an attribute with a
command like:

ensure dungeon has DARK

or taking an attribute away from an item with a command like:

ensure lantern hasnt LUMINOUS

Object Attributes

Below is a list of the attributes that can be given to an object, and some brief notes on each.

Attribute Description

CLOSED
If an object has the attribute CLOSED, its contents will not be accessible to the
player.

LOCKED If an object has the attribute LOCKED, it cannot be opened or closed by the player.

DEAD
An object that has the attribute DEAD must also have the attribute ANIMATE. A
DEAD object may not be killed, talked to, shown things or given things.

IGNITABLE
An object that has the attribute IGNITABLE may be used to light an object that has
the object FLAMMABLE.

WORN
An object that has the attribute WORN will not burden the player with its mass. In
order to wear an object it must also have the attribute WEARABLE. While an object
has the WORN attribute, the player will not be able to drop it or give it away.

CONCEALING
An object that has the attribute CONCEALING must also have the attribute
ANIMATE. This attribute indicates that when the object is examined, the objects that
it is carrying should not be listed.

LUMINOUS
When it is present, an object that has the attribute LUMINOUS will allow the player
to enter a location that has the attribute DARK.

WEARABLE The player may wear an object that has the attribute WEARABLE.

CLOSABLE An object that has the attribute CLOSABLE may be opened and closed by the player.

LOCKABLE

Attributes 75

An object that has the attribute LOCKABLE may be locked and unlocked by the
player.

ANIMATE
An object that has the attribute ANIMATE may be killed, talked to, shown things or
given things.

LIQUID
An object that has the attribute LIQUID must be carried within an object that has the
attribute CONTAINER and may be drunk or poured by the player.

CONTAINER
An object that has the attribute CONTAINER may have other objects put inside it. If
it also has CLOSABLE it must not have CLOSED for the player to put things in it. A
container may hold as many mass units as its capacity element is set to.

SURFACE
An object that has the attribute SURFACE may have things placed on top of it. A
surface may hold as many mass units as its capacity element is set to.

PLURAL
If an object is defined with a plural name, it should be given the attribute PLURAL so
the library will avoid printing sentences such as "The boulders is too heavy to go
throwing around."

FLAMMABLE
An object that has the attribute FLAMMABLE may be lit using an object that has the
attribute IGNITABLE.

BURNING
When an object that has the attribute FLAMMABLE is lit, it will be given the
attributes BURNING and LUMINOUS.

ON Free for use by the author.

DAMAGED Free for use by the author.

FEMALE
This attribute should be given to any object that has the attribute ANIMATE and
represents a female character. This will enable the library to refer to the character
correctly.

POSSESSIVE
If an object has the attributes ANIMATE and POSSESSIVE the player will not be
able to take objects from them or ask them for objects unless specifically coded for.

OUT_OF_REACH
An object that has the attribute OUT_OF_REACH cannot be touched, even when it
is in the same location as the player.

TOUCHED
An object that has the attribute TOUCHED has been moved from its starting position
by the player. If the object's long property is set to function, this attribute can be
tested to give an appropriate description.

SCORED Free for use by the author.

SITTING
If the player is currently sitting, this attribute should be given, as the function
+movement will check if it is set before moving the player.

NO_TAB
This attribute indicates that the object's names should not be included during tab
completion. Tab completion is only used by the console interpreter.

NOT_IMPORTANT

This attribute is given to an object that is of no consequence game. It is usually used to
implement nouns that are referred to in a location description but are not part of the
game world the player needs to interact with. Verbs in the library will respond with
You don't need to worry about that. when the player attempts to interact with an
object that has this attribute.

Location Attributes

Below is a list of the attributes that can be given to a location, and some brief notes on each.

Attribute Description

The JACL Author's Guide

76 Object Attributes

VISITED
MAPPED

When the player enters a location, it is automatically given the attributes VISITED
and MAPPED after the lookfunction is run. These attributes may be tested for to
provide a shorter description on subsequent visits. When the JACL interpreter is set to
verbose mode (the DISPLAY_MODE variable is set to 1), locations will have the
attribute VISITED taken away from them before the look function is executed.

DARK
If a location has the attribute DARK, the player must be carrying an object that has
the attribute LUMINOUS in order to enter it.

DARKNESS

If the player's current location has the attribute DARK and no object with the attribute
LUMINOUS is present, the location will be given the attribute DARKNESS and the
player will be prevented from performing any actions that require the ability to see.
You should never manually give or take the attribute DARKNESS to or from a
location, only the attribute DARK.

ON_WATER
If a location has the attribute ON_WATER, any object dropped will sink out of sight
and end up in limbo.

UNDER_WATER
If a location has the attribute UNDER_WATER, nothing may be lit, exposed liquids
will dissipate and no talking is possible.

WITHOUT_AIR
If a location has the attribute WITHOUT_AIR, the OXYGEN_LEFT variable will
be decremented each turn until it reaches zero and suffocation occurs.

OUTDOORS
If a location has the attribute OUTDOORS, any desired effects of weather should be
applied.

MID_AIR
If a location has the attribute MID_AIR, any object dropped will fall out of sight and
end up in limbo. Actions such as jumping will not be allowed either.

MID_WATER
If a location has the attribute MID_WATER any object dropped will sink out of sight
and end up in limbo.

TIGHT_ROPE
If a location has the attribute TIGHT_ROPE, any object dropped will fall out of sight
and end up in limbo.

POLLUTED Free for use by the author.

SOLVED Free for use by the author.

LOCATION
All locations have the attribute LOCATION. If this is taken away the location will
become an object.

SCORED Free for use by the author.

NO_TAB
This attribute indicates that the location's names should not be included during tab
completion. Tab completion is only used by the console interpreter.

NOT_IMPORTANT

This attribute is given to a location that is of no consequence game. It is usually used
to implement nouns that are referred to in a location description but are not part of the
game world the player needs to interact with. Verbs in the library will respond with
You don't need to worry about that. when the player attempts to interact with an
object that has this attribute.

User Attributes

A common use of attributes is to check if an action has already been performed. This may be useful if it is not
logically possible to perform the action twice, or each subsequent attempt would result in a different outcome.
Another possibility is that you would like to give a lengthy response the first time, then a short response on all
subsequent times. To help facilitate this, and many other types of game-specific behaviour, JACL allows you
to define up to 32 user attributes. User attributes are defined using the attribute directive followed by one or
more attribute names. Below is a rather minimal example of using user attributes:

The JACL Author's Guide

Location Attributes 77

attribute DOOR_OPENED

{open_override
ensure door hasnt CLOSED
if door hasnt DOOR_OPENED
 write "You hold your breath as the door slowly "
 write "creaks open.^"
 ensure door has DOOR_OPENED
 return
endif
write "You open the door again.^"
}

The above code creates a user attributes called DOOR_OPENED and gives the object door that attribute
when it is first opened. It also tests whether the door already has this attribute before deciding which message
to display.

The JACL Author's Guide

78 User Attributes

Functions
Functions in JACL are similar in principle to functions and procedures in many other programming
languages. They act as sub-routines, discrete units of code that can be executed manually from other functions
or internally by the interpreter. There are two fundamental types of functions: global and associated. A global
function is independent of any object and is designated as such by being given a name beginning with a plus
sign. Any function whose name does not begin with a plus sign is automatically associated with the nearest
object or location above it in the game file.

It is illegal to define a non-global function before the first object or location as it will not have an
object or location to be associated with.

A function begins with a opening curly brace ({) that is followed directly by the name of the function. It is
possible for a function to have multiple names by providing additional names on the same line as the opening
curly brace, each separated by whitespace. Below is an example of a function associated with an object:

object boulder

{take : push : turn
write "The boulder is way too heavy to move.^"
set time = false
}

This function has three names. As none of the names begin with a plus sign, they are all names associated
with the object boulder.

The full internal name of an associated function is constructed by taking the name as it appears in the
program, then appending an underscore and the label of the object or location that it is associated with. For
example, the above function has the full internal names of: take_boulder, push_boulder and turn_boulder.

If the name of a function begins with a plus sign, it is considered to be a global function and the label of the
nearest object is not appended to the supplied name. For example, the function +eachturn has the full internal
name of +eachturn.

The EXECUTE and CALL Commands

All execute and call commands are of the following format:

execute/call [object.]FunctionName[<arg1<arg2...]

The execute command allows the manual execution of any function by specifying its full internal name. The
call command is almost identical except it will not display an error if the function does not exist. This
behaviour is required when calling a function that contains some optional, extra code that may or may not
exist. When executing functions manually using the execute or call commands, the full internal name must be
specified. With global functions, this is simply the name of the function as it appears in the program. For
example, the following function:

{+hello
write "Hello world!"
}

Functions 79

would be called with the command:

execute +hello

The full internal name of an associated function is constructed by taking the name as it appears in the
program, then appending an underscore and the label of the object or location that it is associated with. For
example, the following function:

object wheel : steering wheel

{examine
write "The steering wheel is covered in black leather.^"
}

would be called with the command:

execute examine_wheel

Once a function is executing, the string constant function_name is set to contain the full internal name that
was used to call the function. This can be useful if the function has multiple names and you need to modify its
behaviour based on which function was used to call it. For example:

{+intro
execute "+example"
}

{+test : +example : +multi
write function_name ^
}

This code will simply output the string +example

An execute command also allows the name of a function be to prefixed with an item label or pointer, followed
by a period. This tells the interpreter to execute the specified function that is associated with the specified
item. For example, the above command could also be expressed as:

execute wheel.examine

The advantage of this syntax is that an item pointer or variable can be used in place of the object label wheel.
The following code snippet is equivalent to the command above:

set noun4 = wheel
execute noun4.examine

When using the syntax of an object pointer or label followed by a period, it is legal to supply a variable,
integer constant or object element as the function name. This is useful when you wish to either iterate through
a series of functions associated with an object or dynamically map an action to a function at run-time. The
name of the function called will be the current integer value of the supplied variable. For example, the code
below demonstrates two ways to call the function 1 that is associated with the dial:

constant setting 2

object dial : dial
 short a "dial"
 setting 5

The JACL Author's Guide

80 The EXECUTE and CALL Commands

{1
write "You set the dial to one^"
}

set dial(setting) = 1

execute dial.dial(setting)

OR, MORE DIRECTLY...
execute 1_dial

It is possible to associate a function with more than one object by prefixing the function name with an asterisk
(*). When you prefix a function with an asterisk the full internal name of the function will be stored exactly as
the name supplied. This allows you to construct a name that mirrors the name that would be created for a
normal associated function. For example:

object redball : red ball

object blueball : blue ball

object yellowball : yellow ball

{kick : *kick_redball : *kick_blueball
write noun1{The} " sails high in the air.^"
}

The above function has three names, the first automatically associating it with the yellow ball in the normally
fashion with the second two manually associating it with the objects redball and blueball. The order the
names are defined in is not important.

When using the above technique to manually associate a function with an object, the label of the
object must not contain an underscore. This is because the supplied function name is parsed from
the right, with everything after the first underscore encountered being considered the object label.
If a function was to be given the name *kick_blue_ball, the interpreter would attempt to associate
the function kick_blue with the object ball.

It is also possible to supply the name of the function to be executed in a string variable or constant. This
technique allows strings to be used as function pointers and is used by the menu.library as a way of passing a
call-back function to function in the library. See the chapter on the menu.library for an example.

A function will stop executing and return to the function that it was called from when it encounters a return
command or arrives at the closing brace. If a function reaches its closing brace, an implicit return true is
executed.

Passing Arguments to a Function

It is possible to pass string and integer arguments to a function when executing it. This is done by following
the function name by a less-than symbol (<) followed by the value to pass. Each additional argument is
separated by another less-than symbol. When the specified function is executed, the arrays arg and
string_arg are populated with the values passed. The array string_arg stores a copy of the string value of
every argument passed. If a string variable or constant is supplied as an argument, the value of the string
constant is stored, not the name of the constant itself. The array arg stores integer value for every argument
that can be resolved to an integer. If an argument can't be resolved to an integer, -1 is stored at that point in the
array. The arrays arg and string_arg are always of equal length, being the total number of arguments

The JACL Author's Guide

Passing Arguments to a Function 81

supplied. Below is an example of a function call that passes seven arguments and a function that displays
them:

string test "This is a string constant."

variable DEPTH 0
variable INDEX 0

{+some_function
...
set DEPTH = 99
execute "+subfunction<This is a literal string.<42<Fred<test<12<DEPTH<13"
...
}

{+subfunction
set INDEX = 0
while INDEX != @arg
 write "arg[" INDEX "]: " arg[INDEX] " string_arg[" INDEX "]: " string_arg[INDEX] ^
 set INDEX + 1
endwhile
}

The above code produces the following output:

arg[0]: -1 string_arg[0]: This is a literal string.
arg[1]: 42 string_arg[1]: 42
arg[2]: -1 string_arg[2]: Fred
arg[3]: -1 string_arg[3]: This is a string constant.
arg[4]: 12 string_arg[4]: 12
arg[5]: 99 string_arg[5]: fuel_left
arg[6]: 13 string_arg[6]: 13

The first argument passed to a function is also stored in the object pointer noun3 for historical
reasons.

The function-call count

Every time a function is executed, an internal count of the number of times it has been called is increased by
one. The value of this count is obtained by prefixing the full internal name of the function with an at symbol
(@). If an at symbol is used on its own, the number of times the current function has executed is returned.

For example, below is the same example used in the section User Attributes, modified to use the function-call
count:

{open_override
ensure door hasnt CLOSED
if @ = 1
 write "You hold your breath as the door slowly "
 write "creaks open.^"
 return
endif
write "You open the door again.^"
}

The JACL Author's Guide

82 The function-call count

The RETURN Command

The return command is used to pass a value back to the function that called it, or the interpreter if called
internally. A return command with no parameters will return the value 1, which is the same as a function
simply reaching its closing bracket. If a value is specified as a parameter to a return command, that value will
be returned instead. For example:

{+some_function
set RESULT = +adder<16<21<42<75
write "The result is: " RESULT
}

{+adder
set INDEX = 0
set COUNTER = 0
while INDEX != @arg
 set COUNTER + arg[INDEX]
 set INDEX + 1
endwhile
return COUNTER
}

The above function +adder will sum all the values passed as arguments and then return the result to the
calling function.

Responding to the Player's Moves

In this section you will learn more about the function calls made by the interpreter when the player types a
move while playing a game. As the first step in processing the player's move, the interpreter attempts to find a
grammar statement that matches the command typed. For more information see the section on Grammar
Statements. If a match is found, the function after the greater-than symbol at the end of the grammar
statement is used as the core name for a series of function calls. This mapping of the player's moves to
functions through the use of grammar statements is one of the fundamental principles of writing a JACL
game.

Before calling any functions, the interpreter will set two object pointers, noun1 and noun2. These are set to
the objects referred to in the move typed by the player in the order they occur. For example, for a move like
"insert card in slot", noun1 would be set to the card, and noun2 would be set to the slot. We will start,
however, by examining a move that refers to a single object, such as "take wooden pole".

The grammar statement that matches the move "take wooden pole" looks like this:

grammar take *here >take

This grammar statement says that if a move consisting of the word take followed by an object that is in the
current location is typed, execute the function take. In reality there are a number of possible functions that can
be called, each having take as a part of their name. For the purpose of the following examples, we will
assume that the object "wooden pole" has the label pole.

After the player types the move "take wooden pole", the first function the interpreter will attempt to execute is
the global function +before_take. If this function exists, and does not return false, no further processing is
performed with regard to this move. Below is an example of what this function might look like:

The JACL Author's Guide

The RETURN Command 83

{+before_take
if guard is *here
 write "You decided to leave " noun1{the} " alone "
 write "while the guard is around."
 return
endif
return false ;continue as normal
}

As you can see, the +before_take function is independent of the object being taken. This makes it ideal for
situations that affect all objects. If this function returns false, or does not exist at all, the interpreter will next
attempt to execute the function take_pole. This function will appear in the game file as a function called take
that is associated with the object pole.

If this function exists, it will be executed in place of the default global action for the take verb. If this function
does not exist, or returns false, the global function +take will be executed. This function contains the default
outcome for the take verb. Below is the +take function from the library:

{+take
if +important<noun1 = true
 return true
endif
if +darkness = true
 return true
endif
if +reach<noun1 = true
 return true
endif
if player has SITTING
 write "You will have to stand up first.^"
 set TIME = false
 return
endif
if noun1(mass) >= heavy : noun1 has LOCATION
 execute +move_scenery
 return
endif
if noun1(mass) > player(capacity)
 write "You are carrying too much to take " noun1{the} .^
 set TIME = false
 return
endif
if noun1 has LIQUID
 write noun1{The} " run" noun1{s} " through your fingers.^"
 return
endif
override
write "You take " noun1{the} .^
move noun1 to player
ensure noun1 has TOUCHED
}

This function performs a few simple tests to confirm the move is possible then moves the object being taken
to the player. When this function reaches the override command (the fourth line from the end), the interpreter
will attempt to execute the function take_override_pole. This will appear in the game file as a function called
take_override that is associated with the object pole. If this function exists, it will replace all the code that
comes after the override command in the function +take. This allows an object-specific outcome to be coded
for, while still taking advantage of all the tests that precede the override command performed. For this reason,

The JACL Author's Guide

84 Responding to the Player's Moves

an override function is only of use when there is a chance that the player's move may not be possible. This is
the case with the take command in situations such as when the player is already carrying too much, the object
they are attempting to take is out of reach, or it is a liquid.

If the function take_override_pole does not exist, the interpreter will attempt to execute the function
+default_take. This function allows the author to code a default override function that applies to all objects.

The same effect can be achieved by modifying the code after the override command of the +take
function in the library. Putting this code in +default_take, however, allows the library to be
upgraded to a newer version at any time without losing your game-specific modifications. This is
obviously the preferred method.

If the override command in the function +take is reached, and neither a take_override_pole or
+default_take function exists, execution will continue from the line after the override command.

The final function to be called in the processing of the player's move, regardless of the outcome of any
preceding it, is +after_take. This function provides the opportunity to display any additional text before the
player's move is complete. Below is an example of this:

{+after_take
if noun1 = cookie
 if cookie(parent) = player
 if fred is *here
 write "Fred looks a bit upset that you have"
 write "taken the last cookie.^"
 return
 endif
 endif
endif
}

It is not important whether an +after function executes a return or return false command, as no further
processing is performed.

The above example details the function calls made for a command referring to a single object. The following
three lists detail all the functions called for an in-game command containing no objects, one object and two
objects respectively.

grammar verb >CoreFunction

The interpreter attempts to execute the function +before_CoreFunction. If this function exists and
does not return false, execution will skip directly to +after_CoreFunction.

1.

If it does not exist, or returns false, an attempt will be made to execute
CoreFunction_CurrentLocation. This is a function called CoreFunction that is associated with the
current location.

2.

If this does not exist, an attempt will be made to execute the global function +CoreFunction.3.
If this function contains an override command, an attempt will be made to execute
CoreFunction_override_CurrentLocation. This is a function called CoreFunction_override that is
associated with the current location.

4.

If it does not exist, or returns false, an attempt will be made to execute the function
+default_CoreFunction.

5.

If this does not exist, or returns false, execution will continue from the line after the override
command.

6.

The JACL Author's Guide

Responding to the Player's Moves 85

The interpreter attempts to execute the function +after_CoreFunction.7.

grammar verb *Object1 >CoreFunction

The interpreter attempts to execute the function +before_CoreFunction. If this function exists and
does not return false, execution will skip directly to +after_CoreFunction.

1.

If it does not exist, or returns false, an attempt will be made to execute CoreFunction_Object1. This is
a function called CoreFunction that is associated with Object1.

2.

If this does not exist, an attempt will be made to execute the global function +CoreFunction.3.
If this function contains an override command, an attempt will be made to execute
CoreFunction_override_Object1. This is a function called CoreFunction_override that is associated
with the specified object.

4.

If it does not exist, or returns false, an attempt will be made to execute the function
+default_CoreFunction.

5.

If this does not exist, or returns false, execution will continue from the line after the override
command.

6.

The interpreter attempts to execute the function +after_CoreFunction.7.

grammar verb *Object1 preposition *Object2 >CoreFunction

The interpreter attempts to execute the function +before_CoreFunction. If this function exists and
does not return false, execution will skip directly to +after_CoreFunction.

1.

If it does not exist, or returns false, an attempt will be made to execute
CoreFunction_Object2_Object1. This is a function called CoreFunction_Object2 that is associated
with Object1.

2.

If this does not exist, or returns false, an attempt will be made to execute the global function
+CoreFunction.

3.

If this function contains an override command, an attempt will be made to execute CoreFunction_
Object2_override_Object1. This is a function called CoreFunction_Object2_override that is
associated with Object1.

4.

If it does not exist, an attempt will be made to execute the function +default_CoreFunction.5.
If this does not exist, or returns false, execution will continue from the line after the override
command.

6.

The interpreter attempts to execute the function +after_CoreFunction.7.

Special Functions

The following are some special purpose functions that are called internally by the JACL interpreter:

Function Description

+intro This function is executed when a game is first run or restarted. It is used to display
introductory text and set the starting values for any variables required.

+header This function is the very first to be executed before the player's command is
processed.

+footer This function is the very last to be executed after the player's command has been
processed.

eachturn_here If the current location has an eachturn function associated with it, it will be executed
directly before, and under the same conditions as, +eachturn.

+eachturn

The JACL Author's Guide

86 Special Functions

This function is executed each time a successful command is entered by the player.
The interpreter decides on whether or not a command was successful by examining
the state of the variable TIME. If it is set to true, the +eachturn function will be
executed (and the TOTAL_MOVES variable will be incremented by one), just
before +footer is executed.

+system_eachturn This is the final function to be executed after each successful command is entered by
the player. This function is used to execute library code that is not game-specific and
must be run after each of the player's commands.

+dark_description This function is called by the interpreter if a look command is executed in a location
that has the attribute DARKNESS.

+object_descriptions This function is called by the interpreter as the last step in processing a look
command. It must display text that indicates the presence of all objects in the current
location that don't have a mass of scenery.

+no_light This function is called by verbs in the library if they are attempted by the player in a
location that has the attribute DARKNESS.

+movement

This function is executed each time the player attempts to move to another location.
If this function returns false (it does not exist or exited with the command return
false), then the player's attempted movement is successful. If it does exist and does
not exit with the command return false (reaches the end of the function or executes
a return (return true) command), then the player is not moved. In this case, some
text explaining why the movement did not occur should be displayed.

movement_here If the current location has a local movement function associated with it, it will be
executed directly before, and under the same conditions as, +movement.

+before_look This is the first function executed whenever a look command is executed. If it returns
true no further processing of the look command occurs.

+title This function is executed after +before_look, but before the locations associated
look function. This function is the place to put any generic code that prints the title of
each location, or extra meta information such as whether the player is currently
sitting down.

look_here This function is executed whenever the player types a look command, moves into a
new location or restores as saved game.

+object_descriptions This function is executed after the above look function to output the descriptions of
all the objects present in the current location.

+after_look This is the last function executed whenever a look command is executed.

constructor_item This function is executed for each item defined straight after the game file is loaded
and before +intro is executed.

+save_game
+restore_game
+restart_game
+undo_move
+quit_game

These functions may be defined to override the internal implementation of the
respective system-level commands. When the player attempts to use one of these
commands, the interpreter will first look for the presence of the corresponding global
function. If this function exists it will be executed. If it does not exist, the default
implementation inside the interpreter will be used.

Utility Functions

The following are utility functions that are provided by utils.library:

Function Description

+no_light

The JACL Author's Guide

Utility Functions 87

This function is called by verbs in the verbs.library if the player attempts to use them
in a location that has the attribute DARKNESS.

+details Object This function displays information about the object that is passed to it as a parameter.
This information includes whether the object is open or closed and any other objects
that are contained within or being carried by this object.

+contents Object This function displays a list of any other objects that are contained within or being
carried by the object passed to it as a parameter. This function is called by +details.

+spaced_contents
Object

This function is similar to +contents except that it starts a new paragraph if there are
any objects to list. It is more suited for use after location descriptions.

The JACL Author's Guide

88 Utility Functions

Creating New Verbs
Although the implementation of a large number of standard verbs is available in verbs.library, almost all
large games will find the need to define custom verbs. New verbs are defined using grammar statements and
their default implementation is provided in a global function. This chapter contains information on making
your custom verbs as robust and complete as possible.

When adding a new verb, it is important to be sure that you are doing a good thing. Adding a new verb simply
to facilitate a guess-the-word type puzzle is definitely a bad thing. On the other hand, having an obvious verb
missing is almost as annoying for the player as being made to guess an obscure one. Also consider that adding
a new verb doesn't always mean adding a new function. You may find that a required verb is simply a
synonym for an existing verb. In this case, simply add a new grammar statement with the synonym and point
it to an existing function. In the library file you will find many functions that are mapped to from more than
one grammar statement. For example, here is the start of the global function +insert and its matching
grammar statements:

grammar insert *held on *present >insert_on
grammar put *held on *present >insert_on

{+insert_on
if +reach<noun2 = true
return true
endif
...

Another possibility is to define "put" as an actual synonym of "insert". There are potential dangers with this
method that are described in the section on Synonyms.

Now for a few general rules. Each verb that involves touching an object should check that the object does not
have the attribute OUT_OF_REACH before allowing the player to manipulate it. This, of course, does not
apply to verbs that can only be performed on objects that are being held. The following line of code is an
example from the top of the +take function:

{+take
...
if +reach<noun1 = true
 return true
endif
...
}

These above lines tell the JACL interpreter to return true if the function +reach returns true. In practice, this
means that if the object is unreachable by the player, nothing beyond this line will be executed. Below is the
content of the +reach function from verbs.library:

{+reach
if arg[0] has OUT_OF_REACH
 write arg[0]{The} " " arg[0]{is} " out of reach.^"
 set time = false
 return true
endif
return false
}

Creating New Verbs 89

This function simply tests if the specified object has the attribute OUT_OF_REACH. If so, an appropriate
message is displayed, the variable time is set to false and the function returns true. If the object does not have
the attribute OUT_OF_REACH, the function will return false.

Most verbs will also make a similar call to the function +darkness. This function tests whether the player is
currently in darkness or not. Actions that require the player to see should have the lines:

if +darkness = true
 return true
endif

Finally, all verbs should contain a code block that calls the function +important. This function tests whether
the passed object has the attribute NOT_IMPORTANT and displays a suitable You don't have to worry
about that. type message. If the verb you are adding refers to two objects, you may need to call this function
twice, one for each object. If one of the objects in the command needs to be an object that is *held, you will
only need to call +important for the other object, as objects with the attribute NOT_IMPORTANT can't be
taken due to the take verb stopping when it reaches this same test. Below is an example of a call to
+important:

if +important<noun1 = true
 return true
endif

If your verb causes the object to be moved, such as the take verb, you must also ensure that the object is given
the attribute TOUCHED if the move was successful. This will ensure that any tests as to whether the object
has been moved from its initial position or not will be accurate. This time an example from the end of the
+take function:

...
override
write "You take " noun1{the} .^
move noun1 to player
ensure noun1 has TOUCHED
}

If the verb performs any tests to check whether the move should be successfully completed under the current
circumstances or not, an override command should be added directly before any effects are coded, such as in
the example above. This allows override functions to be associated with objects in order to change the default
outcome while still taking advantage of the tests you have coded. Below is an example of the types of tests
that the default action for a verb should perform. Of course, the exacts tests you will require are specific to the
nature of the verb you are coding.

grammar ask *present for *carried >ask_for

{+ask_for
if here has UNDER_WATER
 write "Talking under water isn't very easy.^"
 set TIME = false
 return
endif
if noun1 hasnt ANIMATE
 write noun1{The} " seem" noun1{s} " to be ignoring "
 write "your request.^"
 return
endif
if noun1 has DEAD

The JACL Author's Guide

90 Creating New Verbs

 write noun1{The} " " noun1{is} " a bit too dead to "
 write "respond.^"
 set TIME = false
 return
endif
if noun1 = player
 write "I think it might be time to take a break and "
 write "get a cup of tea.^"
 set TIME = false
 return
endif

As you will have seen above, it is also important that the variable TIME is set to false if the move typed by
the player could not be performed. Setting TIME to false tells the interpreter that the eachturn functions
should not be executed. In other words, if the player's move is not possible, time should not pass.

One last thing to keep in mind when adding grammar statements is whether its scope indicators are going to
clash with any other existing grammar statements. For example, consider the following two lines:

grammar give *present grief >hassle

grammar give *held to *present >give_to

The vocabulary for each game is stored as a tree. The following tree is a representation of the two grammar
statements above.

Given the two grammar statements above, the command

give sword to troll

would produce the message

The JACL Author's Guide

Creating New Verbs 91

You can't use the word "to" in that context.

This is because sword is a match for *present, therefore causing the parser to branch down a path that only
allows to word grief to be used next. This is obviously not the desired effect. Using $text in a grammar
statement is equally dangerous. As an extreme example, using $text as the first word of the first grammar
statement will prevent any others from ever matching. It is therefore important to bare in mind that grammar
statements are tested in the order they appear in the game file, starting from the top. To have a grammar
statement checked last, add it to your game file after the line including verbs.library.

The JACL Author's Guide

92 Creating New Verbs

Pointers
Wherever an object or a location label can be used, so too can a number of special purpose pointers. When a
command referring to a pointer is processed, the pointer will be substituted with the label of the item that it
currently points to. This avoids the repetition of code and the associated problems of code-bloat and
inconsistency. Below is a function demonstrating the use of pointers:

{+where_is
loop noun3
 if noun3 hasnt LOCATION
 noun4 = noun3(parent)
 write noun3{The}
 write " is in " noun4{the} ^
 endif
endloop
}

The above function loops through all the objects defined in the game and displays their current whereabouts.
The loop command sets the object pointer noun3 to each of the objects in turn, while the pointer noun4 is
manually set to each object's parent.

Internally, an object pointer is nothing more than an integer variable, and any integer variable, constant
or element can be set to an object's label and then used anywhere an object is expected.

The two tables below detail each of the internal object and location pointers:

Object Pointers

Pointer Description

player This pointer is set to the object that currently represents the player in the game.

noun1 This pointer is set to the first object referred to in the player's last move.

noun2 This pointer is set to the second object referred to in the player's last move.

self or this This pointer is set to the object that the currently executing function is associated with.

Location Pointers

Pointer Description

here
This pointer represents the location that the player is currently in. It is synonymous to
the element player(parent).

destination

This represents the location that the player is attempting to move into. The value of
destination can be tested in the +movement function before the move is completed.
Once the move is complete, destination will equal here until the next move is
attempted. This is a read-only pointer and therefore cannot be used as the container
parameter of a set command.

self or this
This pointer is set to the location that the currently executing function is associated
with.

Pointers 93

Be sure your code never makes use of a pointer in place of an object or location while it does not
point to a valid object or location. A pointer is not pointing to a valid object or location if it is set to
a number less than one or greater than the number of objects and locations in the game.

The JACL Author's Guide

94 Location Pointers

Object Resolution
A large part of playing interactive fiction involves referring to the objects and locations that make up the
game's world. The information in this chapter will assist you in coding your game in such a way that the
JACL parser will select the object the player intended as often as possible. All references to objects made by
the player are parsed for the following possible structure:

objects [from other objects] [except objects [from other objects]]

The JACL parser will build two lists of objects for any reference made by the player. The first will contain all
the objects for inclusion while the second will contain all the objects referred to after the word except for
exclusion. Once the two lists have been built, the second list will be subtracted from the first list. Both lists
can make multiple use of the word from to refer to objects, however, the word except can not appear more
than once.

Object Naming

When the player refers to an object during the course of the game they may use as many or as few of the
object's names as are required to uniquely identify it. For example, consider the following three objects:

object ball_1: ball
object ball_2: small red ball
object ball_3: big red ball

Presuming all these objects were in the current location, if the player referred to ball, then ball_1 would be
selected. This is because the JACL interpreter divides the number of names an object has by the number of
names supplied to come up with a best match. Although all three objects have the name ball, ball_1 matches
100% while ball_2 and ball_3 only match 33%. If the player referred to red ball, then ball_1 would
automatically be excluded, as it does not have the name red. On the other hand, both ball_2 and ball_3 have
the names red ball, and both would match 66%. In this case, a message would be displayed stating that the
reference was ambiguous. If the player referred to big, then ball_3 would automatically be selected as neither
of the other two objects have the name big at all.

It is important to be aware of the number of names that you give each object, and how they relate to each
other. It is generally best to have two similar objects have the same number of names, although in some cases
you may wish to nominate one to be the default by giving it less names.

For example, in The Unholy Grail there are two objects: beige agar and brown agar. To avoid problems
when looking up agar in the encyclopedia, a third object named simply agar was added. This object stays
permanently in limbo and therefore does not affect any physical manipulation of the two real agar objects. It
does, however, get selected when using commands such as ask_about that accept objects that are *anywhere.

It also possible to define plural names for an object. When the player uses a plural name all the objects that
have that plural name will be selected. For example, the above objects could all be given the plural name balls
using the following code:

object ball_1: ball
 plural balls
object ball_2: small red ball
 plural balls
object ball_3: big red ball

Object Resolution 95

 plural balls

If during the game the player was to type the command take balls, all of the above objects would be selected
and three separate take commands would be issued. It is the use of the plural name that tells the parser that a
reference to multiple objects was intended and that the reference is not ambiguous. It is also possible to
further qualify a reference to a plural name by using one or more regular name. For example, the command
take red balls would result in only the small red ball and the large red ball being taken.

Disambiguation

It is also possible for each object to have the associated function disambiguate to assist in the process of
disambiguation. The parser will attempt to call this function on every object that is a possible result for an
ambiguous reference that needs to be resolved to a single object.

When called, this function will be passed a single argument being the context in which the ambiguous
reference was made. The possible values for this argument are:

Value Description

0 The list of objects for noun1.

1 The list of objects for noun2.

2 Exceptions to the list of objects for noun1.

3 Exceptions to the list of objects for noun2.

4 The list of objects noun1 should be from.

5 The list of objects noun2 should be from.

6 The list of objects noun1's exceptions should be from.

7 The list of objects noun2's exceptions should be from.
To demonstrate, consider a game that had two objects, a red ball and a red book. The following disambiguate
function could be added to the book in order to allow the commands read red and look in red to prefer the
book to the ball instead of displaying the usual "ambiguous reference" message:

object red_book : red book

{disambiguate
if arg = 0
 ifstring command = "read"
 return true
 endif
 ifstringall command[0] = "look" : command[1] = "in"
 return true
 endif
endif
return false
}

This function makes use of the command array to look at the words used so far in the player's command.
Unfortunately as the command has not been fully processed the single resultant action is not yet known. This
function communicates its decision to the parser via its return code. If this function returns false (or doesn't
exist), the object will be included in the list of possible objects and processing will continue as normal. If this
function returns true this object will be instantly selected as the object the player was referring to. If this
function returns -1 this object will be excluded from contention and processing will continue as normal. If all
objects exclude themselves from contention the first will be selected.

The JACL Author's Guide

96 Object Naming

It is important to keep in mind that this function is only called when an ambiguous reference is made. The
command read ball will still attempt to read the ball, it is only a command like read red that results in an
ambiguous reference that will cause these functions to be called. It is also advisable to use this facility
sparingly as it departs from the regular disambiguation rules and may lead to confusion for the player. Used
appropriately, however, it can help to solve a frustrating disambiguation problem that has been identified
during play testing.

The JACL Author's Guide

Disambiguation 97

The JACL Author's Guide

98 Disambiguation

Definitions in Detail
A JACL game file consists of two fundamental components: code and data. This chapter focuses on the data
and provides a detailed break down of all the possible elements that may be defined. In the case of objects and
locations, all their associated properties are also listed.

Objects

object Label : [Name1 Name2 Name3...]
plural Name1 [Name2 Name3 Name4...]
has Attribute1 [Attribute2 Attribute3...]
short IndefiniteArticle ShortDescription
definite DefiniteArticle
long LongDescription / function
parent ItemLabel
mass Integer / heavy / scenery
capacity Integer
player
static

Each object definition begins with the keyword object followed by the object's label. This label is a unique
name by which the object will be referred to by any code within the program. The object's label is then
followed by a space-delimited list of names. You may specify as many names as you can fit into a single line
of JACL code, and if you do not specify any names, the object's label will be set as its one and only name.
These are the names the player will use to refer to this object during the course of the game. For more
information on object names, see the chapter on Object Resolution.

Following this header are any properties you wish to specify that pertain to the object that you are currently
defining. Below is a description of all the possible object properties:

A plural keyword must be followed by a space-delimited list of one or more names that the player can use to
refer to this object and others like it as a group.

Be sure not to confuse this keyword with the attribute PLURAL. The attribute PLURAL is
given to any object that, by itself, is considered to be plural. An example of this would be an
object that represents a bunch of flowers. Objects that have plural names, on the other hand,
may be singular objects, like a coin. If a coin is also given the name coins using the plural
keyword, it can then be referred to as a group along with other objects that also have the
plural name coins.

If, for example, a game has two coins defined, a silver coin and a gold coin, and the player types take coin,
the parser will ask the player which coin they are referring to. If each of the coins was given the plural name
coins, and the player typed take coins, the parser would issue the take command for both coins. In a situation
where there is more than one gold coin and more than one silver coin, this plural name can also be qualified
by one of the object's other names. This is done with a command like take gold coins. This will cause the
parser to issue the take command for all the objects present that have the plural name coins and also have the
regular name gold. If the player had typed take gold, the parser would have asked the player which gold coin
they were referring to, as without a plural name being used it assumes the intent was to refer to a single object.

A has keyword must be followed by a space-delimited list of attributes that the object is to have when the
game begins. For more information, see the chapter on Attributes. If this property is omitted the object will
start with no attributes.

Definitions in Detail 99

A short property must be followed by two parameters: the object's indefinite article and short description. The
ShortDescription text, prefixed by the specified IndefiniteArticle, is displayed using the object's {list} macro
in conjunction with a write command. When using the object's {the} macro, the ShortDescription text will
normally be displayed prefixed with the word the or the specified definite article. If the word name is
specified as the IndefiniteArticle, the ShortDescription text is not prefixed with anything, such as in the case
of a proper noun. This applies to both the {list} and {the} macros. If the ShortDescription text is plural, the
object should be given the attribute PLURAL to ensure that it is referred to appropriately by code in the
library. If the short property is omitted, the IndefiniteArticle will be set to the and the ShortDescription will
be set to the object's label.

A definite property is used to override the default of the that is output when using the object's {the} macro.
This is only of use when writing games in languages other than English that have gender for inanimate
objects.

A long property is followed by the text to be displayed when the object is in the current location and the
player types a look command. If this property is omitted, the object's label is used.

If the text following a long property is the word function, the function long that is associated with
this object will be executed whenever the long description text should be displayed. This provides
the ability to have lengthy or dynamic descriptions.

A parent property must be followed by either a location label (indicating that the object begins the game in
that location), or an object label (indicating that the object begins the game within, on top of or being carried
by that object). If the object's parent is set to here, or the parent keyword is omitted altogether, then the
object will start in the nearest location defined above it in the game file.

A mass property indicates the physical bulk of the object. It must be followed by an integer, the word heavy
or the word scenery. An integer indicates exactly how much the object encumbers the player or fills a
container (see the capacity property below for further information). The word scenery indicates that the
object is immovable and that the interpreter should not display its long description after the location
description. For this reason, no long property is required for object with a mass of scenery. The word heavy
indicates that the object is immovable, but should have the text following its long description printed after the
look function that is associated with its parent location is executed. If this property is omitted, the mass for
the object is set to scenery.

Behind the scenes, a mass of heavy translates to 99 and a mass of scenery translates to 100.
It is important to keep this in mind if you change the capacity property for the player or
create any containers.

A capacity keyword must be followed by an integer, indicating the number of mass units an object with the
attribute CONTAINER, SURFACE or ANIMATE can hold. If this property is omitted, the object will have
a capacity of zero.

Due to this property's default, any object that has the attribute CONTAINER, SURFACE or
ANIMATE must also have a capacity property that is set to a suitably large value in order to
allow an object to accept other objects. The exception to this rule is if the object being given or
inserted has a mass of 0, but this value should only be used for insignificantly small objects.

The JACL Author's Guide

100 Objects

In the file frame.jacl there is an object with the label kryten that is set up to represent the player.
This item has a capacity of 42. If left unchanged, the player can not simultaneously carry objects
whose mass properties total more than 42. This figure of 42 should be used as a guide when setting
the capacity property of other characters, containers or surfaces and the mass of takeable objects.

A player property has no parameters and indicates that this object is to represent the player in the game.
Behind the scenes this sets the object pointer player to point to this object. The value of this pointer can be
changed during the course of the game if required.

The properties bearing, velocity, x and y are used by the special-purpose commands position, bearing and
distance. See the chapter on Special-Purpose Commands for more information.

The properties next, previous, child, index, status, state, counter, points and class have no pre-determined
meaning for objects. You are free to set and test these values as required.

When a command requires a numerical value as a parameter, the following object elements can be referred to:

object_label(parent) 0 object_label(index) 8

object_label(capacity) 1 object_label(status) 9

object_label(mass) 2 object_label(state) 10

object_label(bearing) 3 object_label(counter) 11

object_label(velocity) 4 object_label(points) 12

object_label(next) 5 object_label(class) 13

object_label(previous) 6 object_label(x) 14

object_label(child) 7 object_label(y) 15

These elements can be referred to by name or index number. For example, the following two commands are
equivalent:

 set noun4(parent) = chest
 set noun4(10) = chest

 # ...and to iterate through all properties
 set INDEX = 0
 repeat
 write "PROPERTY " INDEX ": " noun4(INDEX)
 set INDEX + 1
 until INDEX = 16

If an object element is to be given a game-specific use, it is often wise to define a constant that describes its
use. For example:

The JACL Author's Guide

Objects 101

 constant fuel_left 11 # 11 is the index of 'counter'

 {+accelerate
 set space_ship(fuel_left) - 1
 ...
 }

These constants can also be used to set the initial state of an object's properties. For example:

 constant fuel_left 11 # 11 is the index of 'counter'

 object space_ship : space ship
 fuel_left 20

This code will set the element space_ship(11) to equal 20.

Locations

location Label : [Name1 Name2 Name3...]
has Attribute1 [Attribute2 Attribute3...]
short IndefiniteArticle ShortDescription
definite DefiniteArticle
north LocationLabel / nowhere
northeast LocationLabel / nowhere
east LocationLabel / nowhere
southeast LocationLabel / nowhere
south LocationLabel / nowhere
southwest LocationLabel / nowhere
west LocationLabel / nowhere
northwest LocationLabel / nowhere
up LocationLabel / nowhere
down LocationLabel / nowhere
in LocationLabel / nowhere
out LocationLabel / nowhere
static

Each location definition begins with the keyword location followed by the location's label. This label is a
unique name by which the location will be referred to by any code within the game file. The location's label is
then followed by the location's space-delimited list of names. You may specify as many names as you can fit
into a single line of JACL code, and if you do not specify any, the location's label will be set as its one and
only name. These are the names the player will use to refer to this location during the course of the game. For
more information, see the chapter on Object Resolution.

Following this header are any properties you wish to specify that pertain to the location you are currently
defining. Below is a description of all the possible location properties:

A has keyword must be followed by a space-delimited list of attributes that the location is to have when the
game begins. For more information, see the chapter on Attributes. If this property is omitted, the only attribute
the location will have when the game is started is LOCATION.

Internally, objects and locations are both stored using the same data-structure. In fact, once the
game is running, the only difference between the two is that a location has the attribute
LOCATION.

The JACL Author's Guide

102 Locations

A short property must be followed by two parameters: the location's indefinite article and short description.
The ShortDescription text, prefixed by the specified IndefiniteArticle, is displayed using the location's {list}
macro in conjunction with a write command. When using the location's {the} macro, the ShortDescription
text will normally be displayed prefixed with the word the or the specified definite article. If the word name
is specified as the IndefiniteArticle, the ShortDescription text is not prefixed with anything, such as in the case
of a proper noun. This applies to both the {list} and {the} macros. If the ShortDescription text is plural, the
location should be given the attribute PLURAL to ensure the it is referred to appropriately by code in the
library. If the short property is omitted, the IndefiniteArticle will be set to the and the ShortDescription will
be set to the location's label.

The directions the player can travel in from this location are defined by the properties north, northeast,
northwest, south, southeast, southwest, east, west, up, down, in and out. A direction property must be
followed by the label of the location that the direction leads to when the game is started. The links between
locations may be modified during the course of the game to reflect doors opening etc. The constant nowhere
(0), may be used in place of a location label to indicate that the player may not move in that direction. If a
direction is not listed, nowhere is the default.

Following each completed location definition should be an associated function called look. This function will
be executed every time the description for the location is due to be displayed.

The properties points and class have no pre-determined meaning for locations. You are free to set and test
these values as required.

The JACL Author's Guide

Locations 103

When a command requires a numerical value as a parameter, the following location elements can be referred
to:

location_label(north) 0 location_label(up) 8

location_label(south) 1 location_label(down) 9

location_label(east) 2 location_label(in) 10

location_label(west) 3 location_label(out) 11

location_label(northeast) 4 location_label(points) 12

location_label(northwest) 5 location_label(class) 13

location_label(southeast) 6 location_label(x) 14

location_label(southwest) 7 location_label(y) 15

These elements can be referred to by name or number. For example, the following two commands are
equivalent:

set noun4(west) = beach
set noun4(3) = beach

...or iterating across all directions to trap
the player in the current location
set INDEX = 0
repeat
 set here(INDEX) = nowhere
 set INDEX + 1
until INDEX = 12

Integer Variables

Integer variables are defined using the keyword integer followed by the name of the variable. The starting
value for the variable can be set by following the name of the variable with an integer or a previously defined
constant. If no value is specified on definition, the variable is initialised with a value of zero.

The following are some examples of variable definitions:

constant DEFAULT_POWER 42

integer AIR_LEFT 100
integer LAGERS_DRUNK ; Set to zero by default
integer AIRLOCK_SEALED true
integer MOTOR_POWER DEFAULT_POWER

The JACL Author's Guide

104 Integer Variables

Like all other data definitions, variables can not be defined within the body of a function.

Internal Integer Variables

The following is a list of integer variables defined internally by the JACL interpreter.

Variable Description

compass

This variable is used to store the direction the player moved in when
they travel between locations. This variable may be tested in either
of the movement functions allowing you to prevent the move from
occurring or displaying some special text as required. The direction
travelled is encoded as an integer that can be compared to a set of
constants. See the section on Moving Non-player Characters for
details.

total_moves

This variable records the number of successful moves entered by the
player so far. This variable starts at 0 and is incremented each time a
valid command is entered by the player. This is indicated by the
value of the variable TIME (see below).

score
This variable indicates how many points the player has scored
during the course of the game.

display_mode

This variable indicates whether the interpreter is in verbose or brief
mode, with a value of 1 being verbose and 0 being brief. The
starting value is 0. In brief mode, each location is given the attribute
VISITED when the player enters it, this is not the case when in
verbose mode.

internal_version

This variable is set to the major version number of the JACL
interpreter that you are using. This can be tested for in the +intro
function to ensure compatibility between your game and the version
of the interpreter being used to play it.

time

This variable is set to true when the player makes a move. If at no
time during the processing of that move it is set to false, two things
will happen. Firstly, the variable TOTAL_MOVES will be
incremented by one. Secondly, the eachturn functions will be
executed if they exist.

max_rand

When the word random is supplied as a parameter to a command
expecting an integer value, a random number between one and the
current value of max_rand will be generated. The default value is
100.

notify
When set to true the player will be notified of any increase in their
score when the points command is used.

The JACL Author's Guide

Internal Integer Variables 105

String Variables

String variables are defined using the keyword string in the same format as an integer. For example:

string menu_title "Options:"

Once defined, the value of a string can be output by passing the name of the variable as a parameter to a write
statement. Strings have a maximum length of 256 bytes.

Arrays

It is possible to define more than one integer or string with the same name, thereby creating an array of
values. Arrays can also be created by supplying more than one value during a single declaration. For example:

integer FIBONACCI 0 1 1 2 3 5 8 13 21 34 55 89 144
integer FIBONACCI 233 377 610 987 1597 2584 4181

The above code will create a single array of variables called FIBONACCI that contains 20 values. The
number of values held by an array is fixed when the game is first executed and is referenced by using an at
symbol (@) followed by the name of the array. Individual elements of an array are accessed by directly
following the name of the array with a set of square brackets ([]) containing the index of the element. The
first element of an array is at index 0. The following code displays the contents of the FIBONACCI array:

integer INDEX

{+display_fibonacci
set INDEX = 0

repeat
 write FIBONACCI[INDEX] ^
 set INDEX + 1
until INDEX = @FIBONACCI
}

In the above code, @FIBONACCI returns the number of elements in the array, which is one
greater than the index of the last element. Take care when using this value to iterate over an array
not to access the element ARRAY[@ARRAY].

This same technique can be applied to other data types such as strings. For example, consider the following
code from verbs.library:

string LCNumber zero one two three four five six seven eight nine ten
string UCNumber Zero One Two Three Four Five Six Seven Eight Nine Ten

{+number_upper
if arg[0] < 0 : arg[0] > 10
 write arg[0]
else
 write UCNumber[arg[0]]
endif
}

{+number_lower
if arg[0] < 0 : arg[0] > 10

The JACL Author's Guide

106 String Variables

 write arg[0]
else
 write LCNumber[arg[0]]
endif
}

As it is possible to change the value of an integer and a string after they have been created, there is also a
shortcut for creating arrays of variables with all elements being loaded with a default value. This is done by
using the keywords integer_array or string_array followed by the name of the variable and the number of
elements to create. For example, the following line of code will create an array of 10 integer variables called
OPTIONS, all with the value 0:

integer_array OPTIONS 10

It is also possible to specify a custom default value after the size of the array like this:

integer_array OPTIONS 10 42

This will create ten variable with the name OPTIONS and the value of 42.

Constants

The basic syntax for a constant statement is:

constant ConstantName Value

It is possible to define integer and string constants, the type being inferred from the value. If you would like to
create a string constant that contains only a number, enclose the number in double quotes: Below is an
example of creating constants. This example is taken from the beginning of The Unholy Grail and defines one
integer and three string constants that contain the bibliographical information required by the Treaty of Babel:

constant game_title "The Unholy Grail"
constant game_author "Stuart Allen"
constant game_version 2
constant ifid "JACL-002"

Unlike a variable, the initial value of a constant is not an optional parameter. A value must be specified and
this value will remain unchanged for the duration of the game.

Although a variable can be used wherever a constant can be used, if a value is not to change during
the game, there are two advantages to using a constant. The first is that the value cannot be
changed by accident using a set command. The second is that constants are not saved each time the
player makes a move so for this reason they also provide a performance increase over the use of
variables.

Synonyms

Synonyms are a way of substituting a word in the player's move for another word. They are defined using the
keyword synonym followed by the word to be substituted and then the word to be put in its place. Care
should be taken when defining synonyms, as duplicate grammar statements are often the better approach.
Consider the following examples:

synonym get take

The JACL Author's Guide

Arrays 107

synonym grab take

With the above synonyms defined, the command 'get note' would be translated to 'take note' before being
parsed. With the below grammar statements defined, but no synonyms in place, the command "get note"
would be parsed as is, but will still be mapped to the take function.

grammar take **here >take
grammar get **here >take
grammar grab **here >take

The problem with the synonym approach is that if we were then to define the following grammar statement,
we would run into trouble:

grammar get out >exit

With the above synonym defined, the command 'get out' would be translated to 'take out' before being parsed,
a sentence that the game would not understand.

There are right and wrong times to use both approaches to broadening your game's vocabulary. Just be sure to
take care and consider the potential effects of any synonyms you define.

Filters

There are a few filters defined in verbs.library, and chances are you will never need to define any of your
own. They are defined using the keyword filter followed by the word to be filtered from the player's input
before it is parsed.

The following are some examples of filter definitions (taken from verbs.library):

filter the
filter quickly

With the above filters defined, if the player typed the command:

quickly take the coin from the bag

the parser would process:

take coin from bag

Filters should be defined very sparingly. They are a designed to give the illusion of the parser
understanding more than it really does. Although at times this can be good, at other times it can be
very, very bad.

Grammar Statements

The basic syntax for a grammar statement is:

grammar MoveSyntax >FunctionName

The JACL Author's Guide

108 Synonyms

The keyword grammar defines a move that may be typed by the player and the function that will be executed
when this move is made. The MoveSyntax section defines the syntax of the move and consists of one or more
parameters that may either be a word to be typed verbatim or one of several special tokens. The last parameter
of a grammar statement is a greater-than symbol directly followed by the core name of the function to be
executed if a move of this format is typed by the player.

The table below details the tokens that can be used as part of the MoveSyntax:

Token Description

*here
Indicates that an object in the current location must be supplied at this point in the
move.

**here
Indicates that one or more objects in the current location may be supplied at this
point in the move.

*held Indicates that an object held by the player must be supplied at this point in the move.

**held
Indicates that one or more objects held by the player must be supplied at this point in
the move.

*present
Indicates that an object either in the current location or held by the player must be
specified at this point in the move.

**present
Indicates that one or more objects either in the current location or held by the player
must be specified at this point in the move.

*anywhere
Indicates that an object anywhere in the game world must be specified at this point
in the move.

**anywhere
Indicates that one or more objects anywhere in the game world must be specified at
this point in the move.

*inside
This scope indicator can only be used as the second noun of verbs that have two
nouns. It indicates that an object that is a child of the first noun must be specified at
this point in the move.

**inside
This scope indicator can only be used as the second noun of verbs that have two
nouns. It indicates that multiple objects that are children of the first noun must be
specified at this point in the move.

*location
Indicates that a location in the game world must be specified at this point in the
move.

$string
Indicates that an arbitrary text string must occur at this point in the move. If this text
string is to contain spaces, it must be enclosed in double quotes.

$integer Indicates that an integer must be supplied at this point in the move.

For example, the following are some valid grammar statements:

grammar take **here >take
grammar insert **held in *present >insert_in
grammar set *held to $integer >set_to

The first statement says that if the player types the word take, followed by one or more objects that are in the
current location, then the function take should be executed. The second states that if the player types the word
insert, followed by one or more objects that are being held, followed by the word in, followed by an object
that is either being held or is in the current location, then the function insert_in should be executed. The third
states that if the word set followed by a single object that is being held, followed by the word to, followed by
an integer then execute the function set_to. Feel free to add extra grammar statements that map to library

The JACL Author's Guide

Grammar Statements 109

functions into your program. Keeping these extra grammar statements within the game-specific part of your
code means that you can upgrade the library at a later date without needing to re-enter your additions. The
exact way in which these functions are executed is detailed in the section on Responding to Player's Moves.

When entering a new grammar definition, be sure not to leave a space between the greater-than
symbol (>) and the name of the function to be executed.

User Attributes

The basic syntax for an attribute statement is:

attribute AttributeName [AttributeName AttributeName...]

The keyword attribute defines a user attribute that can be used throughout your game for any custom purpose
you require. Once a user attribute is defined, it is used in the exact same manner as a system attribute. You can
define up to 32 user attributes.

The JACL Author's Guide

110 User Attributes

Internals

Constants and Random

When using a command that requires you to provide a numerical value, such as if and set, the following
constants may be used.

Constant Value

scenery 100

heavy 99

true 1

false, nowhere or
null

0

status_width Set to the number of columns the status window is currently displaying.

status_depth Set to the number of rows the status window is currently displaying.

objects Set to the number of objects defined in the game.
The word random can be used anywhere the above constants can be. The word random will be substituted
for a random number between 1 and the current value of the variable max_rand. By default, max_rand is set
to 100.

Internal Commands

Listed here are the only in-game commands that are internal to the interpreter. All other commands to be
interpreted during the course of the game must be defined as a grammar statement in the game code.

Command Description

restart Will cause the JACL interpreter to ask the user if they are sure, restarting the
game from the beginning if they answer yes, returning to the game if they answer
no.

info Will display the version information of the JACL interpreter that you are running
and the maximum number of items it was compiled to handle. This limit may be
increased by changing the MAX_OBJECTS define statement in the file jacl.h
then re-compiling the interpreter.

oops [ReplacementWord]Replaces the most likely incorrect word in the player's last command with the
supplied replacement word.

script Will cause the current game session to be recorded to the file specified at the
ensuing prompt.

unscript Stop a previously started transcript.

again This command repeats the player's last move.

undo Will cause the game to revert to the state it was in before the previous command.

quit This will cause the JACL interpreter to ask the user if they are sure, closing the
interpreter if they answer yes, returning to the game if they answer no.

Internals 111

The JACL Author's Guide

112 Internal Commands

The Menu Library
There are many situations where it is desirable to present the player with a menu of options from which they
can select. The menu.library contains a set of functions that assist in the display of menus and this chapter
details their use.

There are two fundamental types of menu that can be created using menu.library. The first displays the menu
options then returns the player to the normal game prompt. From there, if they type a command that contains
only a single integer it is treated as the selection of one of the menu options. The second type of menu directly
prompts the player to select an option using the asknumber command and then re-displays the menu options
for a further selection. This type of menu can be further customised by setting the variable MENU_MODAL
to either true or false. If MENU_MODAL is set to true the menu can only be exited by selecting an explicit
option that breaks out of the menu loop. If MENU_MODAL is set to false the menu will exit if the player
simply presses enter or types 0.

Both types of menus can be configured to work in one of two modes: proxy or execute. In proxy mode, the
string attached to a menu option is treated as a command and is issued as if typed by the player when that
option is selected. In execute mode, the string attached to a menu option is treated as the name of a function to
execute when that option is selected. The mode of the menu is determined by setting the variable
MENU_MODE to either MENU_PROXY or MENU_EXECUTE before displaying the menu.

We will start by demonstrating the creation of a menu that uses the normal game prompt for selecting options.
Below is an example function that creates a simple three-option menu:

{+display_menu
set MENU_MODE = MENU_PROXY
execute "+menu_clear_options"
execute "+menu_add_option<Quietly open the door<open door"
execute "+menu_add_option<Sneak out the front door<out"
execute "+menu_add_option<Pick up the book<take book"
}

The first thing this function does is set the variable MENU_MODE to MENU_PROXY. This indicates that
the final argument passed to the function +menu_add_option is a command to be proxied on the player's
behalf.

The second line calls the function +menu_clear_options. This function simply erases any previous menu
options so a new menu can be build from scratch.

The final three lines add options to the menu by calling the function +menu_add_option. This function takes
two arguments: the text to be displayed for the menu option and either the in-game command to issue or the
function to execute if this option is selected.

When this function is executed it will display:

1. Quietly open the door
2. Sneak out the front door
3. Pick up the book

>

The Menu Library 113

Typing 1, 2 or 3 from the command prompt will cause the appropriate command to be issued. This menu is
considered active until it is erased by calling the function +menu_clear_options.

A looping menu is created by calling the function +menu_prompt and passing the name of the function that
displays the menu options as an argument. For example, the following command will display the same menu
as above, only using the asknumber command to prompt for a selection until the menu is exited:

set MENU_MODAL = false
execute "+menu_prompt<+display_menu"

Using this approach, the player will not be able to perform any action other than select an option from the
menu. The function +menu_prompt calls the function +menu_clear_options before calling the supplied
function to build the menu. For this reason the function +menu_clear_options does not need to be called
manually before adding options.

With the variable MENU_MODAL set to false, the menu can be exited at any time by simply pressing enter
or selecting 0. If the variable MENU_MODAL was to be set to true, only a valid menu option can be
selected. If you need to provide a mechanism for the player to exit the menu when MENU_MODAL is set to
true, this is done by adding a menu option that sets the variable MENU_IN_LOOP to false when it is
selected.

Below is an example of a menu displayed by calling +menu_prompt:

> menu

MAIN MENU:

1. About
2. Instructions
3. Restore saved game
4. Save game in progress
5. Exit menu

Type a number between 1 and 5:

The JACL Author's Guide

114 The Menu Library

Appendix A: JACL Attributes
BIT DECIMAL VALUE OBJECT LOCATION

1 1 CLOSED VISITED

2 2 LOCKED DARK

3 4 DEAD ON_WATER

4 8 IGNITABLE UNDER_ WATER

5 16 WORN WITHOUT_AIR

6 32 CONCEALING OUTDOORS

7 64 LUMINOUS MID_AIR

8 128 WEARABLE TIGHT_ROPE

9 256 CLOSABLE POLLUTED

10 512 LOCKABLE SOLVED

11 1024 ANIMATE MID_WATER

12 2048 LIQUID DARKNESS

13 4096 CONTAINER MAPPED

14 8192 SURFACE KNOWN

15 16384 PLURAL

16 32768 FLAMMABLE

17 65536 BURNING

18 131072 LOCATION LOCATION

19 262144 ON

20 524288 DAMAGED

21 1048576 FEMALE

22 2097152 POSSESSIVE

23 4194304 OUT_OF_REACH

24 8388608 TOUCHED

25 16777216 SCORED SCORED

26 33554432 SITTING

27 67108864 FIRST FIRST

28 134217728 DONE DONE

29 268435456 GAS

30 536870912 NO_TAB NO_TAB

31 1073741824 NOT_IMPORTANT NOT_IMPORTANT

32 2147483648 (Sign BIT) (SignBIT)

Appendix A: JACL Attributes 115

The JACL Author's Guide

116 Appendix A: JACL Attributes

Appendix B: Library Verb Functions
Below is a list of all the functions that are associated with grammar statements in verbs.library. It is not,
however, a complete list of all the possible command constructs the player can use. Although each function is
only listed here once, in most cases there are many grammar statements mapping to that function. For
example, consider the function +cut:

grammar cut *present >cut
grammar chop *present >cut
grammar stab *present >cut

As you can see, the function cut has three grammar statements that map to it. The list below, however, will
only show the first grammar statement that maps to the function. To see all the commands that will cause any
one of the below functions to be called, search for the function name in the verbs.library file.

shake *held >shake
xyzzy >xyzzy
verbose >verbose
brief >brief
help *present >help_other
hint one >first_hint
hint two >second_hint
hint three >third_hint
hint four >fourth_hint
help >help
help games >help_games
hug *present >hug
kiss *present >kiss
pick *present with *held >pick_with
rub *present >rub
rub *held on *present >rub_on
rub *present with *held >rub_with
lick *present >lick
pull *present >pull
cut *present >cut
cut *present with *held >cut_with
break *present >break
clean *present >clean
clean *present with *held >clean_with
yell at *present >yell_at
pay *present >pay
order *carried >order
knock on *present >knock_on
play *present >play
take *here with *held >take_with
fill *held from *present >fill_from
fill *held with *present >fill_with
fill *present >fill
stand >stand
lie on *present >lie_on
sit >sit
sit on *here >sit_on
drop *held >drop
take *here >take
insert *held on *present >insert_on
insert *held in *present >insert_in
ask *present for *carried >ask_for
tell *present about *carried >tell_about
ask *present about *carried >ask_about

Appendix B: Library Verb Functions 117

give *held to *present >give_to
move *present >move
read *present >read
look down >look_down
look up *anywhere in *present >look_up_in
consult *present about *anywhere >consult
feel *present >feel
smell >smell
smell *present >sniff
taste *present >taste
look in *present >look_in
examine *present >examine
i >inventory
inv >list_inventory
sorry >sorry
thanks >thankyou
score >score
open *present >open
close *present >close
lock *present >lock
lock *present with *held >lock_with
unlock *present >unlock
unlock *present with *held >unlock_with
show *held to *present >show_to
untie *present >untie
tie *held >tie
tie *held to *present >tie_to
attack *present >attack
attack *present with *held >attack_with
wave >wave
wave to *present >wave_to
jump on *here >jump_on
jump over *here >jump_over
jump >jump
yes >yes
no >no
why >why?
blow *held at *here >blow_at
throw *held at *here >throw_at
remove *present from *present >remove_from
remove *present >remove
wear *held >wear
talk to *present >talk_to
eat *present >eat
drink from *present >drink_from
drink *present >drink
flick *present >flick
press *present >press
light *present with *held >light_with
light *present >light
extinguish *present >extinguish
swim west >swim_west
west >west
swim east >swim_east
east >east
swim south >swim_south
south >south
swim southeast >swim_southeast
southeast >southeast
swim southwest >swim_southwest
southwest >southwest
swim north >swim_north

The JACL Author's Guide

118 Appendix B: Library Verb Functions

north >north
swim northeast >swim_northeast
northeast >northeast
swim northwest >swim_northwest
northwest >northwest
climb up *here >climb_up
climb down *here >climb_down
enter *here >enter
climb *here >climb
swim in >swim_in
in >in
swim out >swim_out
out >out
swim up >swim_up
up >up
swim down >swim_down
down >down
look >look_around
look under *present >look_under
look behind *present >look_behind
look through *present >look_through
look through *held at *present >look_through_at
look at *present through *held >look_at_through
wait >wait
listen >listen
listen to *present >listen_to
use *present >use
turn *present >turn
turn on *present >turn_on
turn off *present >turn_off
pour *present >pour
tip *present on *present >pour_on

The JACL Author's Guide

Appendix B: Library Verb Functions 119

The JACL Author's Guide

120 Appendix B: Library Verb Functions

Appendix C: Tutorial Game Source Code
#!../bin/jacl

constant GAME_VERSION 1
constant GAME_TITLE "Tutorial Game"
constant GAME_AUTHOR "Stuart Allen"
constant IFID "JACL-001"

string command_prompt "^What do you want to do now? "

constant turns_since_last_sip 5

attribute EXAMINED

location bedroom : master bedroom
 west bathroom
 south nowhere

{look
print:
 You are in your bedroom. There is a large, soft bed
 in the centre of the room while a doorway to the
 west leads into the bathroom.
.
write "To the south there is "
if door has CLOSED
 write "closed"
else
 write "open"
endif
write " door.^"
}

{movement
if compass = south
 if destination = nowhere
 write "The bedroom door is closed.^"
 return true
 endif
endif
return false
}

object bed: bed
 short a "bed"
 mass scenery

{look_under
if guide(parent) = limbo
 write "Hidden under the bed you find this week's "
 write "television guide.^"
 set guide(parent) = here
 points 50
 return
endif
write "You don't find anything else.^"
}

object guide: television tv tele guide
 short a "television guide"

Appendix C: Tutorial Game Source Code 121

 long "The television guide is here."
 parent limbo
 mass 5

{examine : read
write "It contains a listing of this week's programmes.^"
}

{give_to_rick : show_to_rick
print:
 ~Cool!~ Rick exclaims as he snatches it from your
 hands.^^
 Satisfied that you have achieved at least one thing
 today, you decide to go back to bed.^
.
points 50
execute "+game_over"
}

object door : bedroom door
 short the "bedroom door"
 has CLOSABLE CLOSED

{open_override
set bedroom(south) = living_room
set living_room(north) = bedroom
return false
}

{close_override
set bedroom(south) = nowhere
set living_room(north) = nowhere
return false
}

location bathroom : bathroom
 east bedroom

{look
print:
 You are in the bathroom. The only exit
 from here is back east into the bedroom.^
.
}

{movement
if compass = east : compass = out
 write "You bang your head as you walk through the "
 write "doorway.^^"
 return false
endif
write "The only exit from here is to the east.^"
}

object box: small wooden box
 has CONTAINER CLOSABLE CLOSED
 short a "small wooden box"
 long "There is a small wooden box here."
 mass 25
 quantity 20

{close_override

The JACL Author's Guide

122 Appendix C: Tutorial Game Source Code

write "The lid creaks as you push it closed.^"
ensure box has CLOSED
}

object note: orange note
 short an "orange note"
 long "An orange note rests on the ground."
 parent box
 mass 5

{read : examine
write "The note reads, ~Welcome to Jamaica and have a nice day.~^"
}

location living_room: living room
 short the "living room"
 north nowhere

{look
if here has VISITED
 write "You have returned to the living room.^"
else
 print:
 You are in the living room. There is a small
 television perched on a low-lying table in front
 of a sofa.
 .
 write "To the north there is "
 if door has CLOSED
 write "closed"
 else
 write "open"
 endif
 write " door.^"
endif
}

{movement
if compass = north
 if destination = nowhere
 write "The bedroom door is closed.^"
 return true
 endif
endif
return false
}

{eachturn : *eachturn_bedroom
move door to here
}

object television: television tv tele
 short a "television"
 mass scenery

{examine
if self has EXAMINED
 write "It's Rick who is the TV addict, not you.^"
 return
endif
write "There is currently a cartoon showing on the "
write "television.^"

The JACL Author's Guide

Appendix C: Tutorial Game Source Code 123

ensure self has EXAMINED
}

{turn_off
print:
 As you reach over and switch off the television,
 you get quite a shock to see Rick rapidly growing
 a coat of hair and foaming at the mouth. The shock
 of this is only surpassed by that of him sinking
 his newly-acquired fangs into your throat.^
.
execute "+game_over"
}

{turn_on
write "The television is already on."
}

object rick: son boy teenager rick
 has ANIMATE
 short name "Rick"
 long "Rick is here, watching television."
 mass heavy

{examine
write "Rick is staring blankly at the television screen.^"
}

{tell_about_guide
print:
 ~Oh, you found it, great. Give it to me!~ Rick exclaims.^
.
}

{tell_about_kryten
print:
 Rick starts to nod off as you tell him all about your early childhood.^
.
}

{ask_about_rick
print:
 ~My life is all but ruined until you find the TV guide.^
.
}

{ask_about_television
print:
 ~It could be bigger,~ Rick says with a sigh.^
.
}

{talk_to
print:
 ~Uh, yeah, I'll do it in a minute,~ Rick mumbles
 with out looking up. You have quite a strong
 suspicion that he didn't really hear a word
 you said.^
.
}

#---

The JACL Author's Guide

124 Appendix C: Tutorial Game Source Code

GLOBAL FUNCTIONS
#---

{+eachturn
set rick(turns_since_last_sip) + 1
if rick(turns_since_last_sip) = 5
 if here = living_room
 write "Rick takes a sip from his drink.^"
 endif
 set rick(turns_since_last_sip) = 0
endif
}

{+default_ask_about
if noun1 = rick
 print:
 Rick pokes out his bottom lip then blinks several
 times. This, you have figured out over the
 years, translates to, ~Not a clue.~^
 .
 return
endif
return false
}

{+intro
style bold
write "^^" GAME_TITLE
style normal
write " by " GAME_AUTHOR "^^"

print:
 Your alarm rings and you climb out of bed.
 Monday morning again so soon. Oh well, at least
 your house doesn't have a front door so you have
 a good excuse for not going to work.^^
.

if here hasnt OUTDOORS
 set north_wall(parent) = here
 set south_wall(parent) = here
 set east_wall(parent) = here
 set west_wall(parent) = here
endif
set ground(parent) = here
look
}

{+game_over
write "^"
execute "+score"
endgame
}

object kryten: myself self me
 has ANIMATE
 short name "yourself"
 quantity 42
 parent bedroom
 player

{examine

The JACL Author's Guide

Appendix C: Tutorial Game Source Code 125

write "As beautiful as ever.^"
execute "+inventory"
}

grammar about >about

{+about
write "This is the game from the tutorial section of the JACL Author's Guide."
write "See the appendix for the full source to this program.^"
}

integer OFFSET
integer INDEX
string status_text "temp"
constant status_window 3

{+update_status_window
style reverse
padstring status_text " " status_width
write status_text
cursor 0 1
write status_text
cursor 0 2
write status_text
cursor 1 1
write here{The}
setstring status_text "Score: " score " Moves: " total_moves
set OFFSET = status_width
length INDEX status_text
set OFFSET - INDEX
set OFFSET - 1
cursor OFFSET 1
write status_text
style normal
}

object north_wall: north north wall
 has NO_TAB
 short the "north wall"

object south_wall: south southern wall
 has NO_TAB
 short the "south wall"

object east_wall: east eastern wall
 has NO_TAB
 short the "east wall"

object west_wall: west western wall
 has NO_TAB
 short the "west wall"

object ground: ground floor
 has SURFACE NO_TAB
 short the "ground"

#include "verbs.library"

The JACL Author's Guide

126 Appendix C: Tutorial Game Source Code

Glossary

association A function is said to be associated with the nearest object or location that is defined
above it in the game file. An underscore and the label of the item it is associated with is
appended to the function name specified in the code to form the function's full internal
name.

attribute An attribute is a boolean value, or flag, that can be set on or off (using the ensure
command) for any given item.

child An object is said to be a child of whichever other item its parent element is currently set
to. This indicates that the child object is somehow contained within or possessed by the
parent item.

command A command is one of the basic actions that can be performed within a function.

container A container is any expression that can have its value set to an integer. These are item
elements, item pointers and integer variables.

current
location

The current location is whichever location the parent element of the object representing
the player is set to. The object that represents the current player is specified by the
current value of the object pointer player.

directive A directive is a setting that may be placed in the interpreter's configuration file.

element An element is any of the properties of an item that can be set to hold an integer value.

expression An expression is a group of three parameters that may be used with an if command. All
expressions evaluate to either true or false.

filter A filter is any word that has been specified to be removed from the player's move before
it is processed by the interpreter.

full internal
name

If a function's name begins with a plus sign, it is global and the name specified in the
code will also be its full internal name. If not, the name that appears after a function's
opening curly brace, followed by an underscore then the label of the item that the
function is associated with will be its full internal name.

grammar A grammar statement is the definition of a command construct that may be used by the
player during the game and the function that should be called when that move is made.

grand
parent

The grand parent of an object is the last object in the chain of possession. For example, if
a coin is inside a purse that is in turn inside a bag, the bag is said to be the grand parent of
the coin, while the purse is its parent.

integer

Glossary 127

An integer is a 32 bit signed whole number. It can range between -2147483648 and
2147483647.

item Item is the group term for objects and locations.

keyword Keywords are any of the terms that define the nine basic data elements in a game. They
are object, location, filter, synonym, variable, grammar, constant, string and
parameter.

label A label is the internal name given to an object, location or variable. No two labels can be
the same.

location A location is an item that the player may be inside. All locations have the attribute
LOCATION and are defined using the keyword location.

name All items must have one or more names. These are the names that the player may use to
refer to that item during the course of the game.

object An object is an item that represents any aspect of the game that the player must be able to
refer to, but not be inside.

parameter The term parameter refers to one of two things. Firstly a parameter is any information
that follows a JACL command, keyword or property. If multiple parameters are
specified, they must be separated by white space.

parent An object's parent is the item that it is currently inside or possessed by. The parent of the
object that represents the player is the location they are currently in.

pointer A pointer is a special type of variable that may be used anywhere an item label can be.
When used, it will be substituted for the label of the item that it is currently set to.

indefinite
article

An indefinite article is used before singular nouns that refer to any member of a group. In
English these are a or an. An item's indefinite article is defined using the first parameter
of a short property. This article will be displayed when using a {list} macro.

definite
article

A definite article is used before singular nouns that refer to a particular member of a
group. In English this is the. An item's indefinite article defaults to the unless otherwise
specified by supplying a definite property. This article will be displayed when using a
{the} macro.

property A property is one of the elements of an object or location that can be defined at start-up.

scope Scope describes the position of an object relative to the player. The scope indicators are
*present, *here, *held and *anywhere.

statement A statement is a command, keyword or property along with all of its parameters.

The JACL Author's Guide

128 Glossary

synonym A synonym is any word that has been specified to be swapped for another word in all
moves typed by the player.

value A value is an integer, or anything that resolves to an integer such as: an object label, an
object element, an object pointer, a variable, true (1), false (0), scenery (100),
heavy(99), nowhere (0), lines (the number of lines the screen can display) or random.
For more information on constants and random see the chapter on Internals.

white space White space is any tab, space, comma or colon that occurs outside double quotes

The JACL Author's Guide

Glossary 129

The JACL Author's Guide

130 Glossary

	Table of Contents
	Introduction
	Typographical Conventions
	Installation
	Compilation
	Playing the Sample Games

	Playing Interactive Fiction
	Moving Around
	Manipulating Objects
	Interacting with Characters
	Meta Commands

	Tutorial Game
	Language Syntax
	Program Structure
	Getting Started
	Locations
	The Player
	Some Introductory Text
	Objects
	Verbs and Functions
	Overriding Functions
	Doors
	Non-player Characters
	The Passing of Time
	Winning and Losing the Game

	Testing, Debugging and Releasing
	The WALKTHRU Command
	Transcripts

	The Debug Library
	The INSPECT Command
	The Verb VALUEOF
	The Verb FETCH

	Releasing Your Game
	Screen Display
	The WRITE Command
	Special Characters
	Printing the Value of Variables
	Printing the Value of Item Elements
	Printing the Names and Descriptions of Objects
	Sentences Referring to Varying Objects
	Printing the Value of Strings

	The PRINT Command
	The LOOK Command
	The MORE Command

	Glk and Multimedia
	Blorb Files and the bjorb Utility
	The IMAGE Command
	The SOUND Command
	The VOLUME Command
	The STOP Command
	The TIMER Command
	The STYLE Command
	The Status Window
	The UPDATESTATUS Command

	Flow Control
	The IF, IFALL and ENDIF Commands
	The IFSTRING Command
	The IFEXECUTE Command
	The ELSE Command
	The LOOP and ENDLOOP Commands
	The REPEAT and UNTIL Commands
	The WHILE and ENDWHILE Commands
	The RETURN Command

	Changing Data
	The SET Command
	Type Casting
	The SETSTRING and ADDSTRING Commands
	The PADSTRING Command

	Movement
	The MOVE Command
	The TRAVEL Command
	Moving Non-player Characters
	The DIR_TO and NPC_TO Commands

	Special-Purpose Commands
	The POINTS Command
	The PROXY Command
	Trigonometry
	The POSITION Command
	The BEARING Command
	The DISTANCE Command
	The ASKNUMBER AND GETNUMBER Commands
	The GETSTRING Command
	The GETYESORNO Command
	The SAVEGAME and RESTOREGAME Commands
	The ENDGAME Command
	The TERMINATE Command
	The UNDOMOVE Command

	Attributes
	The ENSURE Command
	Object Attributes
	Location Attributes
	User Attributes

	Functions
	The EXECUTE and CALL Commands
	Passing Arguments to a Function

	The function-call count
	The RETURN Command
	Responding to the Player's Moves
	Special Functions
	Utility Functions

	Creating New Verbs
	Pointers
	Object Pointers
	Location Pointers

	Object Resolution
	Object Naming
	Disambiguation

	Definitions in Detail
	Objects
	Locations
	Integer Variables
	Internal Integer Variables
	String Variables
	Arrays
	Constants
	Synonyms
	Filters
	Grammar Statements
	User Attributes

	Internals
	Constants and Random
	Internal Commands

	The Menu Library
	Appendix A: JACL Attributes
	Appendix B: Library Verb Functions
	Appendix C: Tutorial Game Source Code
	Glossary

