
This document contains three sections, a short history of this code, the latest porting
details to Intel x86_64 architecture, and how I use Xcode to maintain everything.

History

I originally came across the FORTRAN code for Adventure and Zork around 1980.
Although after 35 years the details are a bit fuzzy, it was probably from a Digital Equipment
Corporation (DEC) machine of small-word size, at least when compared to the Control
Data Corporation (CDC) machines I was using. Others ported Adventure initially to CDC
land, while I did Zork. In those days ASCII was not common, indeed, most character sets
were all upper case.

The first thing to note is that there was no character data type, so all vocabulary (Hollerith
data), as well as octal bit-flags, were smushed together into large INTEGER arrays.
Adventure's 4-character vocabulary fit nicely into a single INTEGER, but Zork's 6 character
limit required two INTEGERs at the time. At least on DEC systems … although RADIX-50
may have been used, I cannot recall.

My first Zork port was to CDC 170 hardware with 60-bit words and ten 6-bit Display Code
characters per word, running the NOS operating system. So I ripped apart all the double-
integer code and made it work with single-word INTEGERs. Of course, the driving reason
was to reduce the array sizes and make the program smaller, which was an important
factor when memory was measured in a handful of mega-words. The random text
database file was generated with custom COMPASS assembler code that wrote a multi-
record file, which was addressed randomly using a record number, I believe we called
them indexed sequential files. I also added the Spider Room and an End Game, and when
all was complete I renamed the program to Qork. Why? I guess because I knew the code
would never see the light of day, and it was different than the original, and heck, I'd never
even played the original Zork, Qork might be significantly different in ways I was not aware
of!

Speaking of that, to test everything I had done I needed to actually play Qork, and the only
way to do that was to have a map. So Carol and I made maps, using a state of the art
flowchart template, a pencil and our hands! I've included what we did in 1980. The
originals are somewhere yet to be determined, but I did find the high resolution PICT file
scans, which I’ve cleaned up in Photoshop and converted to PNG. Keep in mind that the
scans I made back then look great even today - Apple, always looking forward, must have
used vector graphics.

That was a lot of work, but I was young. I was able to play an entire game of Qork - with
map in hand - in one hour!

Time passes ... it's now 10 years later.

Around 1990 there was a bigger, better, faster computer in my life, a CDC 180 machine
with 64-bit words and eight 8-bit ASCII characters per word, running the NOS/VE
operating system. Like its 170 predecessor, this was big-endian architecture, we’ll see the

significance of that later. But now I have proper upper and lower case support, so, you
guessed it, I converted every word, phrase and sentence of the Qork text database from
all upper to appropriately-cased English. I also moved from the custom assembler indexed
sequential text database to a standard FORTRAN 77 direct access file - same idea as the
indexed sequential file but now implemented in a portable manner. That was a lot of work,
but I was young. I forget other details of the port, but other than SAVE/RESTORE there
probably wasn’t all that much involved, as everything was still using single INTEGER words
for data structures.

This was when I took control of Adventure. It had been ported to NOS years previously,
but to have it run on NOS/VE meant that I would have to do the work. As with Qork, the
text database used a custom random access file format that I changed to standard direct
access. Again, the biggest hassle was that the Adventure text database was not proper
ASCII upper and lower case, it was Display Code upper and lower case, but Display Code
is a 6-bit character set, and to get a lower case letter from a 6-bit upper case letter
required an escape character, the caret ‘^’. So “Hello World!” in ASCII was “H^E^L^L^O
W^O^R^L^D!” in Display Code. Yuck, that was a lot of work, but I was young.

Thus, in 1990 I had both Adventure and Qork running on NOS/VE, available to me and me
only, basically. They were packaged in a state of the art Source Code Utility (SCU) library
with automated System Control Language (SCL) build and run procedures. Other than
those two games I have never played any games in my life, and I stopped playing them at
that time. And matters sat that way for a quarter of a century.

It’s now 2015 and I am old and starting to cleanup. Throughout my life I have managed to
bring forward lots of stuff, from source code to media, for no real reason that I can discern,
other than to have it around. There’s not much reason to do that anymore, but for old
times sake I decided to modernize my Adventure and Qork and release them into the wild
of the public domain. What you will see here is FORTRAN code that has survived 4/10 of
a century of time. I’ve left most of the old code vestiges intact, just commented out. The
result is a messy looking source, but that is my intent, you are an implementer and are
used to that sort of thing. The mere user still only sees pristine game play.

x86_64 Porting Details

It’s taken the world FOREVER to move to 64 bit words. For me to port Qork to Linux
required making the vocabulary and data INTEGER*8 types, that was the only way to get 6
characters per word. I was NOT going to backtrack to two integers per Qork word! And
FORTRAN 77 these days is not FORTRAN 77 from 40 years ago, in particular gfortran is
not happy with all the trickery using shifts, masks and the bitwise AND and OR operations
used by the game input parsers to pack multiple A1 characters into an A8 INTEGER, left
justified and space-filled. pgf77 and ifort could be coerced into that; however, x86_64
hardware is little-endian so I had to reverse the packing and the shifting, etc, it was a mess
and for sure a PITA. To make things as portable as possible, I redesigned everything using
the CHARACTER data type as an intermediary, and this is what I came up with, much
nicer, hardware independent, and works on all the compilers available to me:

• The parser still accepts A1 input characters stored in INTEGERs (80a1), and returns
packed A8 characters in INTEGER*8 words, for backwards compatibility.

• It converts 80a1 input data to CHARACTER*80 variable IN0:  
	
 	
 write(
 in0,	
 '80a1'	
)	
 (inbuf(i),	
 i=1,80) 	
 	
 	
 	
 	
 	

• Since this is all ASCII data, I used this code to single-case everything in IN0 to a new
character*80 variable IN: 
	
 	
 do	
 i	
 =	
 1,	
 len(in0)	

	
 	
 #if	
 (!	
 defined	
 __GFORTRAN__)	

	
 	
 	
 	
 	
 	
 j	
 =	
 ichar(in0(i:i))	

	
 	
 	
 	
 	
 	
 if	
 (j>=	
 ichar("A")	
 .and.	
 j<=ichar("Z")	
)	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 in(i:i)	
 =	
 char(ichar(in0(i:i))+32)	

	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in(i:i)	
 =	
 in0(i:i)	

	
 	
 	
 	
 	
 	
 end	
 if	

	
 	
 #else	

	
 	
 	
 	
 	
 	
 j	
 =	
 iachar(in0(i:i))	

	
 	
 	
 	
 	
 	
 if	
 (j>=	
 iachar("A")	
 .and.	
 j<=iachar("Z")	
)	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 	
 in(i:i)	
 =	
 achar(iachar(in0(i:i))+32)	

	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in(i:i)	
 =	
 in0(i:i)	

	
 	
 	
 	
 	
 	
 end	
 if	

	
 	
 #endif	

	
 end do

• It was then a simple matter to loop through the CHARACTER*80 variable IN, collect
non-space characters into the character variable WORD, and then encode them into
the INTEGER*8 array OUTBUF:  
	
 	
 read(
 word(1:8),	
 ‘a8'	
)	
 outbuf(outbufc)	
 	
 	
 	
 	
 	
 	

But gfortran wasn’t through with me yet, as it wasn’t as flexible as pgf77 and ifort when it
came to coercing character data to integer data. In fact, it plain wouldn’t do it!. So all the
millions of constructs like:
	 integer*8 vocab(689)
	 data vocab/ “LANTER”, “TROLL”,

I had to convert to:
	 integer*8 vocab(689)
	 data vocab/ 6hLANTERN, 5hTROLL, ...

I look at that as a digression caused by gfortran; then again, pgf77 and ifort are
commercial compilers and having gfortran compatibility seemed like a worthwhile
compromise … free is what folks want.

And of course there was all the normal port-stuff like random number seeding and
generation that was different and varied among the compilers. And Adventure did not have
a SAVE/RESTORE feature so I added that, and a front-end procedure to manage game
save states, and to build the games, databases and save states. And how to handle EOF
and whether to use stdin or /dev/tty, and replacing sense switches with environment
variables. And still more case conversion, and removing carriage control characters ... you
do know what a carriage control character is, don’t you?

That was a lot of work! Did I mention that I’m not young? Oh, I also fixed Guardian mode;
too bad I didn’t do that much sooner, my job would have been easier.

GDN>HE
 VALID COMMANDS ARE:
 AA- ALTER ADVS
 AC- ALTER CEVENT
 AF- ALTER FINDEX
 AH- ALTER HERE
 AN- ALTER RVARS
 AO- ALTER OBJCTS
 AR- ALTER ROOMS
 AV- ALTER VILLS
 AX- ALTER EXITS
 DA- DISPLAY ADVS
 DC- DISPLAY CEVENT
 DF- DISPLAY FINDEX
 DH- DISPLAY HACKS
 DL- DISPLAY LENGTHS
 DM- DISPLAY RTEXT
 DN- DISPLAY RVARS
 DO- DISPLAY OBJCTS
 DP- DISPLAY PARSER
 DR- DISPLAY ROOMS
 DS- DISPLAY STATE
 DT- DISPLAY TEXT
 DV- DISPLAY VILLS
 DX- DISPLAY EXITS
 D2- DISPLAY ROOM2
 EX- EXIT
 HE- TYPE THIS LIST
 NC- NO CYCLOPS
 ND- NO DEATHS
 NR- NO ROBBER
 NT- NO TROLL
 PD- PROGRAM DETAIL
 RC- RESTORE CYCLOPS
 RD- RESTORE DEATHS
 RR- RESTORE ROBBER
 RT- RESTORE TROLL
 TK- TAKE
GDN>

In summary, you have FORTRAN 77 source for Adventure and Qork that compiles with
pgf77 (PGI), ifort (Intel) and gfortran (GNU). Each program has its associated text database
that’s read once during initialization and is converted to a direct access file that’s indexed
by a record number. Also during initialization the block data common blocks that define a
game’s state are output as an unformatted file. The random text database and initial
saved game state are what is required to play a game, and what you, Implementer, must
create for your users. I wonder if endian-ness problems remain?

Tested on Linux using gfortran, pgf77 and ifort. Tested On Mac OS X 10.10.3 (Yosemite)
with gfortran. You can fetch gfortran-5.0-bin.tar.gz from http://sourceforge.net/projects/
hpc; then, from Terminal, install thusly:

http://sourceforge.net/projects/hpc

	 sudo -s # enter admin password
cd / # important
tar -xvpf gfortran-5.0-bin.tar # /usr/local/bin/gfortran

I also tested on Mac OS X 10.6.8 (Snow Leopard), although the binary built on 10.10.3
failed with Illegal Instruction, which I was never able to build-around by disabling hardware
features like sse4. So I dug-up Xcode 4 and used gfortran 4.7 to make special static
binaries just for Snow Leopard, and as it turns out for 10.7 (Lion) too.

The tool that both users and Implementers use is called play-text-adventure-games
(platag). Try platag -full-help for complete help.

Finally, much of the source has been truncated to 72 columns and thus many valuable
comments have been lost. Back then interactive time sharing systems often used columns
73-80 for sequence numbers.

Xcode

After years of iOS development I found that I missed having Xcode around for this recent
work, particularly for source code and asset management, revision history and examining
diffs. What you see in the TAG distribution is only a subset of what I have, and I eventually
realized that Xcode could manage all the extra stuff for me. Here are some examples of
the files in my Xcode project:

• This PDF that you are reading is a Pages document.
• The original PICT map images.
• The Photoshop projects of the imported PICTs, with my enhancements.
• An OmniGraffle document of Adventure’s All Alike Maze. The AAM was missing from my

original Adventure map, so I overlaid a PNG image of the OmniGraffle maze as a
Photoshop layer to create the final Adventure map that you find in the distribution.

• A shell script to create the distribution tarball. Really nothing special here, although
because I do all my work on Mac OS X, it builds special static versions of the Adventure
and Qork executables so mere mortals can play without having to install gfortran. The
gfortran incantation to do this differs from what you see in play-text-adventure-games by
adding these command line arguments;

	 -static-libgfortran -lgfortran -lgcc -lSystem -nodefaultlibs /usr/local/lib/libquadmath.a
• And, of course, all the TAG files that comprise the released distribution tarball.

The Xcode project is a simple External Build project, although I just use platag for my
builds rather than a Makefile with multiple build targets. Still, the Xcode viewer and editor
work well with the FORTRAN source code, and the built-in SCM features are convenient.

Have fun, Steve Lidie, lusol@icloud.com.

mailto:lusol@icloud.com

