
PunyInform Technical Report

PunyInform

A fast and compact library for writing text adventure games for the Z-machine
running on 8-bit computers as well as other platforms.

PunyInform was conceived and designed by Johan Berntsson and Fredrik Rams-
berg. Coding by Johan Berntsson, Fredrik Ramsberg, Pablo Martinez and Tomas
Öberg. Includes code from the Inform 6 standard library, by Graham Nelson.
Thanks to Stefan Vogt, Jason Compton, John Wilson, Hugo Labrande, Richard
Fairweather, Adam Sommerfield, auraes and Hannesss for issue reporting, advice,
testing, code contributions and promotion. Thanks to David Kinder and Andrew
Plotkin for helping out with compiler issues and sharing their deep knowledge of
the compiler. Huge thanks to Graham Nelson for creating the Inform 6 compiler
and library in the first place.

1

Contents

1 Introduction 4
1.1 Program and Data Structures . 4

2 Parser 5
2.1 Overview . 5
2.2 State Variables . 5
2.3 Handling Errors . 6
2.4 Handling Disambiguation . 6
2.5 Main Routines . 7

2.5.1 _ParseAndPerformAction() 7
2.5.2 _ParsePattern(p_pattern, p_phase) 8
2.5.3 _ParseToken(p_token_type, p_token_data, p_phase) 8
2.5.4 _GetNextNoun(p_parse_pointer, p_phase) 9
2.5.5 _CheckNoun(p_parse_pointer) 9

2.6 Utility Routines . 10
2.6.1 _AskWhichNoun(p_num_matching_nouns) 10
2.6.2 _AddMultipleNouns(p_multiple_objects_type) 10
2.6.3 _FixIncompleteSentenceOrComplain(p_pattern) . . . 10
2.6.4 _GuessMissingNoun(p_type, p_prep, p_nounphrase_num) 10
2.6.5 PronounNotice(p_object) 11
2.6.6 _PrintPartialMatch(p_start, p_stop) 11
2.6.7 _PrintUnknownWord() . 11

3 Grammar 12

4 Messages 13

5 Scope 14
5.1 _PerformAddToScope(p_obj) . 14
5.2 _SearchScope(p_obj, p_risk_duplicate, p_no_add) 15
5.3 _PutInScope(p_obj, p_risk_duplicate) 15
5.4 _UpdateScope(p_actor, p_force) 15
5.5 GetScopeCopy(p_actor) . 15
5.6 ScopeCeiling(p_actor, p_stop_before) 15

2

5.7 TouchCeiling(p_actor) . 16
5.8 LoopOverScope(p_routine, p_actor) 16
5.9 ScopeWithin(p_obj) . 16
5.10 TestScope(p_obj, p_actor) . 16
5.11 _ObjectScopedBySomething(p_obj) 16
5.12 ObjectIsUntouchable(p_item, p_dontprint, p_checktake) . 16
5.13 ObjectIsInvisible(p_item, p_dontprint) 16
5.14 _FindBarrier(p_ancestor, p_obj, p_dontprint) 16

6 Appendix: Infocom Dictionary and Grammar Formats 18
6.1 Dictionary . 18
6.2 Grammar 2 . 18
6.3 Grammar 1 . 19

3

Chapter 1

Introduction

PunyInform is based on the Inform 6 standard library, developed by Graham
Nelson. In this document DM4 refers to the Inform Designer’s Manual, 4th
edition, which is available online at: http://www.inform-fiction.org/manual/
html/index.html

The PunyInform parser is to a large extent compatible with Inform 6, for
example wn, NextWord() and NextWordStopped() are implemented, and
noun/second/inp1/inp2/special_number/parsed_number work the same.
However, the internals are completely different, and this document gives an
overview of how the code works.

1.1 Program and Data Structures
PunyLib starts executing from the main routine in lib/puny.h, which contains
the game loop. To support and implement the game these additional blocks are
used:

• Parser, implemented in lib/parser.h
• Grammar, implemented in lib/grammar.h
• Messages, implemented in lib/messages.h
• Scope, implemented in lib/scope.h

The structure and main routines of these blocks are described in separate chapters
below.

4

http://www.inform-fiction.org/manual/html/index.html
http://www.inform-fiction.org/manual/html/index.html

Chapter 2

Parser

2.1 Overview
The game loop, implemented in the main routine lib/puny.h, controls the
execution of the game. In this loop the player input is read by a call to
_ReadPlayerInput. The parser entry routine _ParseAndPerformAction is then
called, which determines which verb the input uses, tries all patterns found in
the grammar for this verb, using _ParsePattern, and executes the best pattern
found. If no good pattern found it will instead write an error message, such as
“I don’t understand that sentence.”

_ParsePattern loops over the pattern, calling _ParseToken for every token, and
handles errors such as running out of either user or pattern data prematurely.

_ParseToken in its turn uses _GetNextNoun when detecting a noun-related token
(NOUN_OBJECT, CREATURE_OBJECT, HELD_OBJECT, MULTI*_OBJECT) to parse a
noun phrase. It also handles preposition handling.

_GetNextNoun relies on _CheckNoun to try parsing a noun phrase, but adds
checks for pronouns and plurals, and disambiguates if needed.

_CheckNoun checks if objects in scope match words in the input string, either by
using its name property or its parse_name routine. More than one object could
match if the input is incomplete, which is reported back using the which_object
global array, and used in disambiguation.

2.2 State Variables
These are the most important state variables in the parser

• noun: as described in DM4
• second: as described in DM4

5

• action: as described in DM4
• actor: as described in DM4
• consult_word: as described in DM4
• consult_from: as described in DM4
• special_word: as described in DM4
• special_number: as described in DM4
• parser_action: this is set to ##PluralFound if plurals, otherwise 0. Note

that ##TheSame (described in DM4) is not supported.
• which_object: this array holds the objects that matched the currently

parsed noun phrase
• multiple_objects: this array holds the object or objects that matched a

MULTI*_OBJECT token
• parser_all_found: this is true if “all” was parsed, such as “get all”.
• parser_check_multiple: this is set to the MULTI*_OBJECT token being

parsed
• parser_all_except_object: this is set to Y when parsing “take all Xs

except Y” or “take all but Y”, so it can be skipped when executing the
action.

2.3 Handling Errors
The parser uses a two phase approach to matching grammar templates to user
input. In phase 1 the parser is testing several patterns to give them a score on
how well they match the input. In this phase no messages are printed.

The best candidate then enters phase 2, where the same tests are run, but in
this phase error messages are printed. If any errors are found and printed in
phase 2, then the parser gives up (since the best candidate failed) and returns
control to the game loop, which will prompt new user input.

There is an optimisation that allows phase 2 to be skipped when the pattern
fit perfectly, and all processing has already been done in phase 1. This is con-
trolled by the phase2_necessary variable, which is set during phase 1 to either
PHASE2_SUCCESS, PHASE2_ERROR or PHASE2_DISAMBIGUATION. PHASE2_ERROR in-
dicates that phase 1 failed silently for this pattern, but that it will produce a
message if run again in phase 2.

2.4 Handling Disambiguation
When the pattern matches a single noun token such as NOUN_OBJECT
with more than one object then the parser will indicate this by setting
phase2_necessary to PHASE2_DISAMBIGUATION in phase 1. If the same pattern
is run in phase 2 then the parser will ask the user to disambiguate (“Do you
mean the blue book or the red book?”). If the user input reduces the options to
a single object it will be used for the noun phrase, otherwise the parser will

6

print an error message.

2.5 Main Routines
2.5.1 _ParseAndPerformAction()

_ParseAndPerformAction uses the global arrays buffer and parse. buffer
contains the input string, while parse is a list of tokens, where each token
contains a pointer to the word string in buffer and a pointer to the dictionary
word. The routine returns the negative number of words when the input could
be parsed successfully (so -2 if two words parsed), or true if the parser failed to
parse the input, and the user needs to add new input.

_ParseAndPerformAction firsts determines which verb the input uses. It then
checks each pattern to see if it matches the input. This is done by calling
_ParsePattern which takes p_pattern (the current pattern to check) and
p_phase (set to 1). _ParsePattern returns a score that indicates how well
the pattern matches the input. During phase 1 this match will be done silently,
so no error messages are printed even if the pattern fails to match the input.

The score is 100 if a perfect match was found, or the number of words matches
by the pattern if it failed to match. This means that only part of the pattern
matched, or the match silently failed during phase 1. This could happen because
for example “examine dog” was matched when no dog was in scope (visible). To
distinguish between these options _ParsePattern will set the phase2_necessary
flag to PHASE2_ERROR when an error was found.

_ParseAndPerformAction keeps track of the score for each pattern, and if a
perfect score of 100 is found then it it will set up the PunyInform variables for
noun, second, action etc as described in the PunyInform documentation, and
then run the implementation routine for the grammar line. For example, if the
input was “examine me” the ExamineSub routine will be activated with noun
set to the player object.

However, if no perfect score was found then the highest score is used. If
phase2_necessary is set to PHASE2_ERROR, then _ParsePattern will be
called again with this pattern and p_phase set to 2. In phase 2 _ParsePattern
will print the error messages that were surpressed during phase 1. If the match
failed and phase2_necessary wasn’t set if means that there wasn’t enough input
to match the pattern, and a message such as “I think you wanted to say ‘climb
something’. Please try again” is printed.

Another possibility is that the pattern seems to match but the noun phrase is
ambiguous. In this case the pattern returns a score as if the pattern matched the
noun phrase, but sets phase2_necessary to PHASE2_DISAMBIGUATION,
and - like for PHASE2_ERROR - _ParsePattern is called again with p_phase
set to 2. _ParsePattern/_GetNextNoun will then call _AskWhichNoun to prompt

7

the user for additional information (“Do you mean the blue or the red book?”),
and return 100 if the noun phrase is successfully parsed.

2.5.2 _ParsePattern(p_pattern, p_phase)

_ParsePattern takes a pattern and the current phase, and returns a score that
indicated how many words could be successfully parsed using the pattern. If
the whole pattern could be parsed, then 100 is returned, and -1 is returned
if the input needs to be reparsed. This can happen if the player was asked
to disambiguate, but instead of adding to the noun phrase a completely new
command as given.

_ParsePattern calls _ParseToken for each token in the pattern, until either the
complete pattern has been parsed, or it runs out of user input to parse against.
It can also return early if _ParseToken returns GPR_FAIL.

Since patterns can contains a list of acceptable prepositions the routine needs
to skip ahead until the end of the preposition list if _ParseToken managed to
match a preposition. The routine will also not return early in case _ParseToken
failed to parse on of the preposition alternatives.

If _ParseToken successfully parsed one of the noun token types, then
_UpdateNounSecond is called to update the noun and second parser state
variables.

_ParsePattern also detects bad input (words that are not in the dictionary)
and prints error messages if in phase 2.

2.5.3 _ParseToken(p_token_type, p_token_data, p_phase)

The format of _ParseToken is compatible with ParseToken for Inform 6 com-
patibility, but takes an extra argument, p_phase, to indicate the current phase.
ParseToken is mentioned in DM4 and can be used by games to provide cus-
tom parsning, so keeping the same format allows also PunyGames to offer this
functionality.

The first two arguments are the same as ParseToken: token type and token
data. The routine returns the object number or a failure code (GPR_FAIL,
GPR_MULTIPLE, GPR_NUMBER, GPR_REPARSE or GPR_PREPOSITION).

_ParseToken handles each token type differently. If it is a preposition, then it
checks if the current word in the input is a match, and returns GPR_PREPOSITION.
If not, it returns GPR_FAIL. It handles topics and numbers in a similar way,
using _ParseTopic and TryNumber to update consult_from, consult_words,
parsed_number, and special_word as needed.

Nouns are more complicated. If the expected token is a single noun, then
_GetNextNoun is called and the object is returned. Before returning it makes

8

sure that CREATURE_OBJECT only matches something animate, and HELD_OBJECT
tries to pick up objects if not carried by the player.

However, if the expected token is a MULTI*_OBJECT type, then the routine calls
_GetNextNoun and stores the object number in the multiple_objects array.
However, if _GetNextNoun has detected a plural noun, then which_object holds
all objects that partially matches (“books”) and these objects are copied into
multiple_objects instead. It is also possible that it is a single all, in which
case _AddMultipleNouns is called to fill multiple_objects with all reasonable
objects that are in scope. The routine uses look-ahead to handle lists of noun
phrases separated by commas or “and”. It also detects the “all but X” pattern,
and sets parser_all_except_object if found.

2.5.4 _GetNextNoun(p_parse_pointer, p_phase)

_GetNextNoun takes the current input position and phase, and returns the object
number for the next noun if no problem occurred. In addition ot the return
value it will also update parser_action.

_GetNextNoun first skips articles and “all”, so it can parse noun phrases such as
“all books”, “the bird”, and “an apple”. It then checks if the current word is a
pronoun such as “it” or “him”. If it is a pronoun, a suitable objects has been
referred to before so the parser knows who or what to refer to, and that object
is still in scope, then the routine returns the object associated with the pronoun.

_GetNextNoun now calls _CheckNoun to get a list of objects in scope that match
the current input. The matching words have their plural flag checked, and if the
noun phrase indicated plurals (e.g. “books”, “all birds”) then parser_action is
set to ##PluralFound.

If a single object matches then it is returned. If more than one object matches
and it is not a plural noun phrase then disambiguation takes place. In phase 1 it
accepts the input for now, but if code is run again in phase 2 then _AskWhichNoun
is called to prompt the user to disambiguate (“Do you mean the blue book or
the red book?”). If the new input doesn’t help then an error message is printed
and the routine returns the error code.

2.5.5 _CheckNoun(p_parse_pointer)

_CheckNoun takes the current input position, and returns the object that matches
one or more words. In addition to the return value, it updates the which_object
global array, which contains a list of objects that matches (since there could be
more than one), the number of objects that matches, and the number of words
parsed against these object(s).

_CheckNoun loops over all objects in scope, trying to parse each of them against
the words in the input, using either the name property or parse_name. There is
additional logic to handle debugging verbs that need to try to match against

9

any object, regardless of the normal scoping rules. This is only enabled if the
DEBUG compiler flag is used.

_CheckNoun also takes into account if the object is concealed or in the
open, by keeping track of a object level score. This is calculated by
_CalculateObjectLevel and stored in the which_level array, which shadows
which_object. Concealed objects will dropped if there are any openly visible
objects that also match the input.

2.6 Utility Routines
2.6.1 _AskWhichNoun(p_num_matching_nouns)

_AskWhichNoun uses which_object to print a list of objects used in disambigua-
tion. The typical output is “Do you mean X or Y?”.

2.6.2 _AddMultipleNouns(p_multiple_objects_type)

_AddMultipleNouns is used do replace “all” with all suitable objects in
scope.These objects are stored in the multiple_objects global array.

The routine takes the token type being processed, so that MULTIHELD_OBJECT
will add all objects that are being held, which MULTI_OBJECT are all objects in
scope, except for objects being animated, held or concealed.

2.6.3 _FixIncompleteSentenceOrComplain(p_pattern)

_FixIncompleteSentenceOrComplain is called from _ParsePattern because
the sentence shorter than the pattern. The routine checks if the pattern is expect-
ing another noun phrase. If so, and if OPTIONAL_GUESS_MISSING_NOUN
is defined, it can optionally call _GuessMissingNoun to try adding the missing
information. If _GuessMissingNoun is available and manages to fix the sentence
then _ParsePattern will return a perfect score, otherwise an error message is
shown (“I think you want to say ‘kill someone’, please try again.”).

2.6.4 _GuessMissingNoun(p_type, p_prep, p_nounphrase_num)

_GuessMissingNoun is used then noun or second is missing. It tries to guess
the missing parts of the sentence. A typical usage is

> show diamond
(to Sally)

where _GuessMissingNoun checked the scope and found that only Sally was
possible, so “(to Sally)” was written and second set to Sally to complete the
parsing.

10

2.6.5 PronounNotice(p_object)

This routine is called with an object, and update the matching pronoun. For
example, the object Sally will set herobj to Sally, while the object Sword will
set itobj to Sword.

2.6.6 _PrintPartialMatch(p_start, p_stop)

_PrintPartialMatch prints a grammar rule and is used to produce output such
as “I only understood you are far as ‘look’ but then you lost me.” as a reply to
“look on me”.

2.6.7 _PrintUnknownWord()

Prints a word that doesn’t exist in the dictionary by typing it from the buffer
array, using parser_unknown_noun_found which points to an entry in the parse
array. Used for messages such as “Sorry, I don’t understand what ‘sdasdasda’
means.”

11

Chapter 3

Grammar

The standard actions of PunyInform are defined in grammar.h. By default
only the most essential actions are included, but different additional subsets
can be enabled by defining the OPTIONAL_EXTENDED_VERBSET, OP-
TIONAL_EXTENDED_METAVERBS, OPTIONAL_PROVIDE_UNDO, and
DEBUG constants.

For more detail and a list of standard actions defined for each subset, see the
PunyInform manual.

12

Chapter 4

Messages

All texts and messages are located in messages.h, to make it easy to customise
them. Customisation is described in the main PunyInform manual.

Puny internally accesses these messages through the PrintMsg func-
tion, which takes the identifier and optional arguments. For example,
PrintMsg(MSG_PARSER_NOT_MULTIPLE_VERB); will print something like “You
can’t use multiple objects with that verb.”.

13

Chapter 5

Scope

Scope is a list of things an actor (typically the player) can interact with. Normally,
PunyInform updates the scope when a turn starts, before the after routines are
run, before the timers and daemons are run, and before each_turn is run. It is
however possible to switch to manual scope updates by defining the constant
OPTIONAL_MANUAL_SCOPE. With manual scope updates enabled, scope is only
updated when the scope_modified variable is set to true. The library sets it to
true whenever library code does something that may affect scope, like when the
player moves or opens or closes a container. If something happens in game code
which may mean that what’s in scope changes, the game programmer must set
scope_modified = true.

The main routine is _UpdateScope which is called from ParseAndPerformAction
and some other locations in the parser to update the scope when objects move
or is modified by parsing the scope token. In addition, there are several utility
functions that use the loop over or test if objects are in visible or touchable (that
is, are in scope).

5.1 _PerformAddToScope(p_obj)

Check the contents of p_obj.add_to_scope. If it’s an array, add all objects in
the array to scope, plus any objects they want to add through their add_to_scope
properties. If it’s a routine, execute it. That routine can then add any objects it
likes to scope by calling PlaceInScope(p_obj).

14

5.2 _SearchScope(p_obj, p_risk_duplicate,
p_no_add)

Place the specified object in scope, plus all its siblings and children. If
p_risk_duplicate is false, check first that the objects haven’t already been
added to scope. If p_no_add is false, allow the add_to_scope property of
every object to add objects to scope.

5.3 _PutInScope(p_obj, p_risk_duplicate)

(synonyms PlaceInScope, AddToScope)

Place an object in scope. If p_risk_duplicate is false, check first that the
object hasn’t already been added to scope. User code should ignore the parameter
p_risk_duplicate, thus always leaving it as false.

This routine is used by the other scope routines in the library, as well as by
add_to_scope routines.

5.4 _UpdateScope(p_actor, p_force)

Update the scope array to hold the objects currently in scope to p_actor. If
the scope array seems to have the correct contents already, skip the update -
unless p_force is true.

5.5 GetScopeCopy(p_actor)

Calculate what’s in scope for p_actor, and create a copy of the scope array
in the scope_copy array. This is needed when looping over scope items and
performing operations which may change the contents of the scope array, like
calling TestScope for another actor.

5.6 ScopeCeiling(p_actor, p_stop_before)

Find the innermost closed non-transparent container the actor is in, or the room
the actor is in.

Start with the actor and move upwards in the object tree until a closed non-
transparent container or the room is found. If, however, p_stop_before is found
along this path, return the object that was found just before it, one step closer
to the player.

15

5.7 TouchCeiling(p_actor)

Find the innermost closed container the actor is in, or the room the actor is in.

5.8 LoopOverScope(p_routine, p_actor)

Call a routine once for every object in scope to an actor (default is the player).

5.9 ScopeWithin(p_obj)

Add everything inside an object, but not the object itself, to scope. This routine
should only be used in scope routines, and only when scope_stage == 2.

5.10 TestScope(p_obj, p_actor)

Check if an object is in scope to a certain actor (default is the player).

5.11 _ObjectScopedBySomething(p_obj)

If the specified object is in an add_to_scope array of any other object, anywhere
in the game, return that object’s object ID.

5.12 ObjectIsUntouchable(p_item, p_dontprint,
p_checktake)

Check if there’s something stopping the player from touching a certain object. If
parameter p_dontprint is set to false, print a message saying why the player
can’t get to the object. If parameter p_checktake is set to true, extend the
check to decide if the player can take the object. I.e. a button that is part of a
machine can be touched but not taken.

5.13 ObjectIsInvisible(p_item, p_dontprint)

Very similar to ObjectIsUntouchable, but check if there’s something stopping
the player from seeing a certain object.

5.14 _FindBarrier(p_ancestor, p_obj, p_dontprint)

Utility function used by ObjectIsUntouchable and ObjectIsInvisible to find out
if there are barriers between an object and one of its ancestors in the object tree
that prevent the player from touching or seeing the object.

16

To allow this function to work for z3 games, where a function can not be called
with more than three arguments, three global variables are used exclusively to
pass parameters to this function: * _g_item - the object which the calling function
is trying to figure out whether it can be seen or touched * _g_check_visible -
true means we’re checking if the object can be seen, false means we’re checking
if it can be touched. * _g_check_take - true means we should check if the
player can take the object.

If parameter p_dontprint is set to false, this function prints an error message
if it finds such a barrier. It might be something like “But the aquarium is closed!”

17

Chapter 6

Appendix: Infocom
Dictionary and Grammar
Formats

PunyInform uses the same dictionary and grammar formats that were created
by Infocom, and which are also used by Inform 6. Infocom created two versions
of the grammar tables, and we only use grammar version 2.

6.1 Dictionary
Extra data in dictionary:

byte 0 & $1 : Verb flag
byte 0 & $2 : Meta flag
255 - (byte 1)

Verb number (255 - value is for “traditional Infocom reasons”)

6.2 Grammar 2
Grammar table is always located at the start of static memory (address pointed
to by word at $0e in header). Word (Verb number) points to the start address
for the grammar for a verb.

For a detailed description of grammar version 2, read the text starting
with “GV2 is a much more suitable data structure” at https://www.inform-
fiction.org/source/tm/TechMan.txt

Byte 0: Number of grammar lines for this verb + 1

18

Byte 1 ... Syntax line 0, 1, ...

Grammar line

0: highbyte of action_value
1: lowbyte of action_value

(action_value & $0400) ~= 0 means the action is reversed

action = action_value & $03ff

3 bytes per token:

• byte 0 & $0f : token_type
• byte 1 + 2 : Token data

If token_type = 15 (ENDIT_TOKEN), this is the end of line, and byte 1 and 2
are not supplied.

ILLEGAL_TT = 0; ! Types of grammar token: illegal
ELEMENTARY_TT = 1; ! (one of those below)
PREPOSITION_TT = 2; ! e.g. 'into'
ROUTINE_FILTER_TT = 3; ! e.g. noun=CagedCreature
ATTR_FILTER_TT = 4; ! e.g. edible
SCOPE_TT = 5; ! e.g. scope=Spells
GPR_TT = 6; ! a general parsing routine
ENDIT_TOKEN = 15

6.3 Grammar 1
Note that Grammar 1 is not used by PunyInform.

01 Number of grammar lines

00 params wanted
ff token 1
00 token 2
00 token 3
00 token 4
00 token 5
00 token 6
00 action number

02 Grammar line 1, highbyte of action routine
bd Grammar line 1, lowbyte of action routine

Tokens available in grammar version 1:

NOUN_TOKEN = 0; ! The elementary grammar tokens, and
HELD_TOKEN = 1; ! the numbers compiled by Inform to
MULTI_TOKEN = 2; ! encode them

19

MULTIHELD_TOKEN = 3;
MULTIEXCEPT_TOKEN = 4;
MULTIINSIDE_TOKEN = 5;
CREATURE_TOKEN = 6;
SPECIAL_TOKEN = 7;
NUMBER_TOKEN = 8;
ENDIT_TOKEN = $0f ! Legal, but doesn't seem to be used

Token $10-$2f are routine filters (ROUTINE_FILTER_TT). e.g. noun=CagedCreature

Token $30-$4f are general parsing routines (GPR_TT). Routine address is in
#preactions_table–>(token-48)

Token $50-$7f are scope tokens (SCOPE_TT). e.g. scope=Spells Routine address
is in #preactions_table–>(token-80)

Token 80−b3 are attribute filters (ATTR_FILTER_TT). e.g. edible

Token b4−ff are prepositions (PREPOSITION_TT). e.g. ‘into’ Prepositions
are located in the “adjectives table”. The start address is in the constant
#adjectives_table . Each entry consists of two words. If the second word is
the preposition-number (like $ff), the first word is the address of the dictionary
word. There is no length number or end marker. You should just expect to find
the entry somewhere in there.

20

	Introduction
	Program and Data Structures

	Parser
	Overview
	State Variables
	Handling Errors
	Handling Disambiguation
	Main Routines
	_ParseAndPerformAction()
	_ParsePattern(p_pattern, p_phase)
	_ParseToken(p_token_type, p_token_data, p_phase)
	_GetNextNoun(p_parse_pointer, p_phase)
	_CheckNoun(p_parse_pointer)

	Utility Routines
	_AskWhichNoun(p_num_matching_nouns)
	_AddMultipleNouns(p_multiple_objects_type)
	_FixIncompleteSentenceOrComplain(p_pattern)
	_GuessMissingNoun(p_type, p_prep, p_nounphrase_num)
	PronounNotice(p_object)
	_PrintPartialMatch(p_start, p_stop)
	_PrintUnknownWord()

	Grammar
	Messages
	Scope
	_PerformAddToScope(p_obj)
	_SearchScope(p_obj, p_risk_duplicate, p_no_add)
	_PutInScope(p_obj, p_risk_duplicate)
	_UpdateScope(p_actor, p_force)
	GetScopeCopy(p_actor)
	ScopeCeiling(p_actor, p_stop_before)
	TouchCeiling(p_actor)
	LoopOverScope(p_routine, p_actor)
	ScopeWithin(p_obj)
	TestScope(p_obj, p_actor)
	_ObjectScopedBySomething(p_obj)
	ObjectIsUntouchable(p_item, p_dontprint, p_checktake)
	ObjectIsInvisible(p_item, p_dontprint)
	_FindBarrier(p_ancestor, p_obj, p_dontprint)

	Appendix: Infocom Dictionary and Grammar Formats
	Dictionary
	Grammar 2
	Grammar 1

