
PunyInform

PunyInform

An Inform library for writing small and fast text adventures.

Version 4.0, 11 May 2022

PunyInform was conceived and designed by Johan Berntsson and Fredrik Rams-
berg. Coding by Johan Berntsson, Fredrik Ramsberg, Pablo Martinez and
Tomas Öberg. Includes code from the Inform 6 standard library, by Graham
Nelson. Thanks to Stefan Vogt, Jason Compton, John Wilson, Hugo Labrande
and Richard Fairweather, Adam Sommerfield, auraes and Hannesss for issue
reporting, testing, code contributions and promotion. Thanks to David Kinder
and Andrew Plotkin for helping out with compiler issues and sharing their deep
knowledge of the compiler. Huge thanks to Graham Nelson for creating the
Inform 6 compiler and library in the first place.

1

Contents

Introduction 5

Comparison with the Inform 6 Standard Library 6
Getting Started . 6
Actions . 7

The basic actions . 7
OPTIONAL_EXTENDED_VERBSET actions 8
OPTIONAL_EXTENDED_METAVERBS actions 8
DEBUG actions . 8
UNDO . 8
Implicit actions . 8

Moving objects . 9
Animate objects . 9
Articles . 9
Plural . 10
Inventory . 10
Giving Orders . 10
Changing the Player . 11
Capacity . 11
Doors . 11

Simple doors . 11
The with_key property . 12

Daemons and Timers . 12
The reactive attribute . 13
Statusline . 14
Scoring . 15
Moves / Turns . 15
Library Messages and Customization 15
Printing the Contents of an Object . 16
Direction Handling . 17

Fake direction objects. 18
Disabling directions . 19
Ship directions . 19

2

Look . 19
Box Statements and Menus . 20
Scope . 20

Manual Scope . 21
Replacing the Player Object . 22
Parser . 22

Held tokens and automatic take 22
ParseToken . 22

Unsupported Properties and Attributes 22

Programming Advice 24
Error messages . 24
Debugging . 24

DebugParseNameObject . 25
Customizing the Library . 25

Optionals . 25
Parameters . 28
Abbreviations . 29

Limitations for z3 . 29
Properties . 30

Extensions 32
cheap_scenery . 32
flags . 35
talk_menu . 35

Setup . 35
Talk topics . 36
A sample talk_array . 36
Allowing for more flags and/or topic IDs 37
talk_menu routines . 37
talk_menu initialisation . 38
talk_menu example . 38

menu . 38
Extract from DM3 . 39

quote_box . 39
waittime . 40

Appendix A: List of Routines 42
Library Routines . 42
Entry Point Routines . 43
PunyInform Entry Point Routines . 44
Additional Public Routines . 44
PunyInform Public Routines . 44

Appendix B: List of Properties 46

3

Appendix C: List of Attributes 48

Appendix D: List of Variables 50

Appendix E: List of Constants 52

Appendix F: Grammar 54

4

Introduction

PunyInform is a library written in Inform 6 which allows people to create text
adventures/interactive fiction using the Z-machine virtual machine.

The main goal of PunyInform is to allow for games which are fast and
have a small memory footprint. This should make the games run well on
older architectures, such as the 8 bit computers of the 1980s. Our main
target is to make it suitable for games on the Commodore 64 using Ozmoo
(https://github.com/johanberntsson/ozmoo)

PunyInform is based on the Inform 6 standard library, developed by Graham
Nelson. In this document DM4 refers to the Inform Designer’s Manual, 4th
edition, which is availble online at: http://www.inform-fiction.org/manual/html/
index.html

A PunyInform game can be compiled to Z-code version 3, 5 or 8 (z3, z5 or z8),
but not Glulx. To compile games using PunyInform, you need the official Inform
compiler maintained by David Kinder, at https://github.com/DavidKinder/
Inform6. Binaries can be found at if-archive. Please note that PunyInform uses
features that were introduced in Inform v6.36 and using earlier versions of the
compiler will cause errors.

5

http://www.inform-fiction.org/manual/html/index.html
http://www.inform-fiction.org/manual/html/index.html
https://github.com/DavidKinder/Inform6
https://github.com/DavidKinder/Inform6
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6Xexecutables.html

Comparison with the Inform
6 Standard Library

A game written in PunyInform is very similar to a game written with the Inform 6
standard library. However, there are some major differences that are documented
in this section.

Getting Started
To compile a game, unpack the files, place the Inform 6.36 compiler binary
(Get the source or an executable at http://www.ifarchive.org/indexes/if-
archiveXinfocomXcompilersXinform6.html) in the base directory, and type
e.g. inform6 +lib -v3 -s -e library_of_horror.inf (type inform6 -h2
for an explanation of all commandline switches).

You can use the minimal.inf file, supplied with PunyInform, as a starting point
for developing a new game.

The general pattern of a PunyInform game is:

Constant INITIAL_LOCATION_VALUE = ...;

! Change "score" to "time" if you want time on the statusline
Constant STATUSLINE_SCORE; Statusline score;

! define library constants here

Include "globals.h";

! define your own global variables here

! add extension routines and other library customizations here

Include "puny.h";

6

http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6.html
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6.html

! add normal game code here

[Initialise;
"Welcome to the game!";

];

All library constants, including Story, Headline, MAX_SCORE, OBJECT_SCORE,
ROOM_SCORE, NUMBER_TASKS, TASKS_PROVIDED, AMUSING_PROVIDED,
MAX_CARRIED and SACK_OBJECT should be defined before including glob-
als.h, if needed. The roles of these constants are documented in DM4.

Library customization, such as supplying an entry point routine such as
PrintTask, goes between the globals.h and puny.h inclusions.

After the includes you add game code and an Initialise routine, as in other
Inform games.

Actions
PunyInform has most of the actions that the standard library has, but they
are divided into four sets. The basic set of actions is part of the core library.
Then there is a set of normal actions which can be enabled by defining the
constant OPTIONAL_EXTENDED_VERBSET and a set of meta actions
which can be enabled by defining OPTIONAL_EXTENDED_METAVERBS.
OPTIONAL_PROVIDE_UNDO provides the undo verb (z5 and z8 only).
Finally, just as in the standard library, there is a set of debug verbs, which can
be enabled by defining the symbol DEBUG.

The basic actions
Normal actions: Answer, Ask, AskTo, AskFor, Attack, Close, Consult, Cut, Dig,
Disrobe, Drink, Drop, Eat, Enter, Examine, Exit, Fill, GetOff, Give, Go, Inv,
Insert, Jump, JumpOver, Listen, Lock, Look, Open, Pull, Push, PushDir, PutOn,
Remove, Rub, Search, Shout , ShoutAt , Show, Smell, SwitchOff, SwitchOn,
Take, Tie, Tell, ThrowAt, Touch, Transfer, Turn, Unlock, Wait, Wear.

Meta actions: Again, FullScore, LookModeNormal, LookModeLong, Look-
ModeShort, NotifyOn, NotifyOff, Oops, OopsCorrection, Quit, Restart, Restore,
Save, Score, Version.

[*] The Shout action is not present in the standard library. Shout is triggered
if the player types “shout”, “scream” or “yell”, or “shout hello sailor” (with
consult_from and consult_words pointing out the words the player wants to
shout, or 0 if no words were given.)

[*] The ShoutAt action is not present in the standard library. ShoutAt is triggered
if the player types “shout at postman”.

7

OPTIONAL_EXTENDED_VERBSET actions
Normal actions: Blow, Burn, Buy, Empty, EmptyT, GoIn, Kiss, Mild, No, Pray,
Set, SetTo, Sing, Sleep, Sorry, Strong, Squeeze, Swim, Swing, Taste, Think,
Wake, WakeOther, Wave, WaveHands, Yes.

OPTIONAL_EXTENDED_METAVERBS actions
Meta actions: CommandsOn, CommandsOff, CommandsRead, Places, Objects,
ScriptOn, ScriptOff, Verify.

Note: Places and Objects can be disabled by defining the constant NO_PLACES.

DEBUG actions
Meta actions: ActionsOn, ActionsOff, GoNear, Pronouns, Purloin, RandomSeed,
RoutinesOn, RoutinesOff, Scope, TimersOn, TimersOff, Tree.

UNDO
Defining OPTIONAL_PROVIDE_UNDO activates the ‘undo’ command,
which can be used on interpreters that support undo. This will also
make the library mention undo as an option if the player dies/loses. If
DEATH_MENTION_UNDO is defined, the option to use undo is always
mentioned when the game ends, even if the player has won. Note that undo is
not supported in z3 games.

Implicit actions
PunyInform has two routines for performing implicit actions:

• ImplicitGrabIfNotHeld(object) - Take something if it isn’t already held
by the player.

• ImplicitDisrobeIfWorn(object) - Take off something if it is currently
worn by the player.

An action routine which wants to have the player take an item, e.g. noun will
typically do this somewhere near the start of the action routine:

if(ImplicitGrabIfNotHeld(noun)) rtrue;

If, at the end of the ImplicitGrabIfNotHeld routine, the item is held by the
player, the routine returns false, otherwise true. If it returns true, a message has
also been printed. It’s also legal to call this routine with a parameter value of 0,
in which case it always returns false.

To take off an item if it’s worn, use the ImplicitDisrobeIfWorn routine, which
functions in much the same way.

8

The game can turn off all implicit actions by setting no_implicit_actions =
true.

Moving objects
If you move an object into the player’s possession in your own code, like move
Screwdriver to player;, you should always do update_moved = true;. This
is necessary to have PunyInform update the moved attribute and, when applicable,
score points for the object being picked up. If you issue a ##Take action or
some action that does an implicit take, you don’t need to bother with this.

If you have defined OPTIONAL_MANUAL_SCOPE and you do something in code
which may affect scope (Essentially what the player can see), you need to do
scope_modified = true;. As a rule of thumb, do this whenever you move an
object using move or remove or you give or remove any of the attributes open,
transparent and light for an object. Library routines like PlayerTo and all
action routines do this when needed.

Animate objects
If you want to allow the player to take certain animate objects, you can add an
entry point routine called DisallowTakeAnimate and have it return false if noun
is one of those objects. I.e:

[DisallowTakeAnimate;
if (noun ofclass Puppy) rfalse;

];

Articles
PunyInform, unlike the Inform standard library, will not figure out when an
object should have the indefinite article “an”. You need to specify it using the
article property every time it should be “an”. Example:

Object Umbrella "umbrella"
with

name ’umbrella’,
article "an";

Another difference is that PunyInform doesn’t support the articles (note the
s) property. This was only added to the Inform library because it’s useful for
some languages other than English.

9

Plural
PunyInform can handle a collection of objects as long as they can be described
with full names, but it does not offer support for indistinguishable objects. The
library supports pluralname and the plural marking on dictionary words with
the //p suffix.

For example

Object -> RedBook "red book"
with name ’red’ ’book’ ’books//p’;

Object -> BlueBook "blue book"
with name ’blue’ ’book’ ’books//p’;

can be used like

> take book
Do you mean the red book, or the blue book? > red

Taken.

> drop book
Dropped.

> take all books
red book: Taken.
blue book: Taken.

Inventory
Inventory is in wide mode by default. This is controlled with the global variable
inventory_style. Set it to 0 for tall mode or 1 for wide mode. If you want to
allow the player to control this with commands “inventory wide” and “inventory
tall”, define the constant OPTIONAL_FLEXIBLE_INVENTORY. Unlike the standard
library, switching modes is handled by the ##Inv action - there are no actions
just for switching mode.

Giving Orders
When giving an order to an non-player character, for example “john, give me
the hammer”, then only single, sufficiently specified objects are allowed in
the command. Commands such as “john, take all” or “john, take the ball”
(when there is more than one ball available, which would normally prompt a
disambiguation question) are not allowed and will cause the game to ask you to
be more specific.

10

Changing the Player
A PunyInform game by default defines an object selfobj representing the player,
and sets the player variable to this object, but the game author can define
their own customized player object, or even switch player objects mid-game. By
setting CUSTOM_PLAYER_OBJECT to an object, the game will set player to this
object instead. For an example on how to switch player mid-game, see the
change_player.inf file in the howto folder.

Capacity
The capacity property doesn’t have a default value in PunyInform. To check
the capacity of an object, call ObjectCapacity(object). If the object has a
value, it’s returned (unless the value is a routine, in which case it is executed and
the return value is returned). If the object doesn’t have a value for capacity, the
value DEFAULT_CAPACITY is returned. This value is 100, unless you have defined
it to be something else.

Doors
Simple doors
PunyInform supports defining doors just the way it’s described in DM4. In
addition to this, PunyInform supports a more convenient way to define a door.
To enable it, define the constant OPTIONAL_SIMPLE_DOORS. This means
two new mechanims come into play:

• If the door object has an array value for found_in with exactly two locations,
it can leave out the door_to property. Instead, the library will assume
that if the player is in the first location in the found_in array the door
leads to the second location in the array and vice versa.

• If the door object has an array value for found_in with exactly two locations,
it can also have an array value for door_dir. The first entry in door_dir
corresponds to the first entry in found_in and the second entry in door_dir
corrensponds to the second entry in found_in. Use parenthesis around the
values to avoid compiler warnings.

In any single door object, you can use both of these mechanisms, either one of
them, or none.

Example of a regular door in PunyInform:

Object -> BlueDoor "blue door"
with

name ’blue’ ’door’,
door_to [;

11

if(self in Hallway) return Office;
return Hallway;

],
door_dir [;

if(self in Hallway) return n_to;
return s_to;

],
found_in Hallway Office,

has static door openable;

And this is how to define the same door using OPTIONAL_SIMPLE_DOORS:

Object -> BlueDoor "blue door"
with

name ’blue’ ’door’,
door_dir (n_to) (s_to),
found_in Hallway Office,

has static door openable;

Note: OPTIONAL_SIMPLE_DOORS adds 86 bytes to the library size, but
it saves 22 bytes per door which uses both of the features. So if you use these
features for at least four doors, it saves space.

The with_key property
Just as in the standard library, you can use the with_key property to say which
key fits the lock for a lockable object. As an alternative to specifying an object
as a value, PunyInform allows you to specify a routine. The routine should
return false or the object id of the key that fits the lock. When this routine is
called, second holds the object currently being considered as a key. This can be
used to allow multiple keys fit a lock. Example:

Object RedDoor "red door"
with

name ’red’ ’door’,
with_key [;

if(second == RedKey or RubyKey or SmallKey) return second;
],
...

has static door lockable locked;

Daemons and Timers
Property daemon is an alias for property time_out. This means you can’t have
a daemon and a timer on the same object. If you want both, put one of them
in another object, possibly a dummy object whose only purpose is to hold the
timer/daemon.

12

If you need your daemons/timers to execute in a certain order, you can define
the constant OPTIONAL_ORDERED_TIMERS and then set the property
timer_order to any number for some or all objects with daemons/timers. A
lower number means the daemon/timer will execute earlier. The default value is
100. Note that this number should not be changed while a daemon or timer is
running.

The reactive attribute
NOTE: This section deals with an optimization you may want to perform before
releasing a game. You can safely skip it while learning PunyInform and return
to it when you’re close to releasing a game, or not at all.

Each turn, PunyInform needs to check if any of the objects in scope provide any
of these properties:

• react_before
• react_after
• each_turn
• add_to_scope
• parse_name (special, read below!)

These checks are rather time consuming, and they make the game noticably
slower when many objects are in scope, at least on 8-bit machines. To alleviate
this problem, PunyInform has an attribute reactive which all objects providing
any of these properties must have (except possibly parse_name - keep reading
for details). This allows PunyInform to only check for these properties in objects
which have the attribute (checking an attribute is a lot faster than checking a
property), so gameplay becomes faster. By default, PunyInform figures out which
objects need to have this attribute when the game starts. This process causes a
delay of about 0.014 seconds per object on a C64, so up to about 3.5 seconds
for a full-size z3 game. If you want the game startup to be quicker and/or you
want to save some bytes, you can choose to set the reactive attribute manually
instead. To do this, define the constant OPTIONAL_MANUAL_REACTIVE, compile
the game in debug mode and type “DEBUG REACTIVE”, and you will get a
list of all objects that should have the attribute. Add the reactive attribute to
each of these objects in the code. If all objects of a certain class should have the
attribute, you can of course add the attribute to the class instead.

The parse_name property is special. By default, objects should NOT have
the reactive attribute just because they provide the parse_name property.
However, if you use parse_name rather sparingly, you can speed up parsing
by defining the constant OPTIONAL_REACTIVE_PARSE_NAME. Of course, if you
define this constant and OPTIONAL_MANUAL_REACTIVE, you must manually give
all objects providing parse_name the reactive attribute. You should only define
OPTIONAL_REACTIVE_PARSE_NAME if about 10% of your objects or less provide
parse_name. If you use parse_name for lots and lots of objects, the game will

13

be faster without this constant.

Note: react_before is an alias of u_to, react_after is an alias of d_to,
add_to_scope is an alias of in_to and parse_name is an alias of out_to. For
this reason, locations which provide u_to, d_to, in_to or out_to will be included
in the DEBUG REACTIVE report as needing the reactive attribute. Unless
these locations provide each_turn, they actually don’t need the attribute. Giving
them the attribute makes the game a tiny bit slower in these locations.

Note: The player object (AKA selfobj) provides each_turn and add_to_scope,
both set to NULL or 0, to allow the game author to set it to one of their own
routines. If you don’t set them to anything (typically done in Initialise), there is
no need to give the player object the reactive attribute. If you do, you will lose
it from the debug report, but each turn of the game will also be (very slightly)
slower.

Note: If you define OPTIONAL_MANUAL_REACTIVE and you have an object
which has a react_before routine but doesn’t have the reactive attribute,
its react_before routine will never be run. Same thing with react_after,
each_turn, add_to_scope and parse_name.

Statusline
Unless you start replacing routines (and avoid the z3 format) a PunyInform
game always shows a statusline. You can select between two different types of
statusline:

• To show score and turns in the status line, put Constant STATUSLINE_SCORE;
Statusline score; in the beginning of the source.

• To show time in the status line, put Constant STATUSLINE_TIME;
Statusline time; in the beginning of the source, and add a call to
SetTime in the initialise routine (See example below).

Constant STATUSLINE_TIME; Statusline time;
Include "globals.h";
Include "puny.h";
[Initialise;

SetTime(1 * 60 + 5, 5); ! 1:05 am, each turn 5 minutes
];

For z3 games, the statusline is always the same as for the standard library, as
the statusline in z3 is controlled by the interpreter and not the library. For z5
and z8 games, PunyInform’s statusline differs from the standard library: * The
statusline is printed using a lot fewer instructions, making it render noticably
faster on slow machines. * When the statusline is updated (typically once per
turn), the new contents are printed over the existing contents. The standard
library prints spaces over the old contents first, making the statusline appear

14

to blink on slow machines. * The statusline adapts to different screen widths,
selecting one of five different layouts to, in addition to the room name, show
score and moves, only score or nothing. * The game can remove the score from
the statusline by defining OPTIONAL_SL_NO_SCORE. Also, this happens
automatically if the game defines NO_SCORE. * The game can remove the
number of moves from the statusline by defining OPTIONAL_SL_NO_MOVES.

Scoring
Scoring works as in DM4, but it divided into three parts:

• Basic scoring using the score variable and the MAX_SCORE constant
• Scoring using the scored attribute and the OBJECT_SCORE and ROOM_SCORE

constants, enabled by OPTIONAL_SCORED
• The fullscore verb, enabling the player to see a breakdown of the score,

enabled by OPTIONAL_FULL_SCORE

If the game has added points in code, like score = score + 10;, The “full
score” output will also show a line summarizing these points as “Performing
noteworthy actions” (this doesn’t happen in the standard library).

If OPTIONAL_FULL_SCORE is enabled, you can also choose to define
TASKS_PROVIDED to enable support for tasks. Read DM4 for details on
how to use this.

If constant NO_SCORE is defined, no scoring mechanism is included. If it’s a z3
game and the statusline is of type “score”, a score is displayed on the statusline.
The interpreter is responsible for showing the statusline in z3, and it can’t be
made not to show a value for score, unless it is set to show the time on the
statusline. If the constant NO_SCORE is defined, the value of this constant (default
is 0) is shown as the score on the statusline. Also see Statusline

Moves / Turns
The global variable turns has the value -1 until the first turn starts. This
allows user-supplied code being invoked during initialization and the first room
description to act differently based on this.

Library Messages and Customization
All system messages that can be replaced can be found in the file messages.h.

PunyInform uses two forms of library messages: static strings and complex
messages. A typical static string is "Taken.". If a message has parts that vary,
if the same message should be shared by several different message identifiers, or

15

a newline should NOT be printed after the message, the message needs to be a
complex message. A complex message has its own piece of code to print it.

Each message is defined as either a static string or a complex message in
messages.h. You replace a message by defining constants and possibly a Li-
braryMessages routine before the inclusion of puny.h.

NOTE : A static string message can be replaced by a static string or a complex
message, but a complex message can only be replaced by a complex message.

To replace a message with a static string, define a constant with the same name
as the message identifier and give it a string value, i.e:

Constant MSG_INSERT_NO_ROOM "It’s kinda full already, I’m afraid.";

To replace a message with a complex message, define a constant with the same
name as the message identifier, give it a value in the range 1000-1299 and provide
a LibraryMessages routine to handle it, i.e:

Constant MSG_EXAMINE_NOTHING_SPECIAL 1000;

[LibraryMessages p_msg p_arg_1 p_arg_2;
switch(p_msg) {
MSG_EXAMINE_NOTHING_SPECIAL:

print_ret (The) noun, " looks perfectly normal in every way.";
}

];

The LibraryMessages routine takes three arguments - a message identifier
(p_msg) and two optional arguments (p_arg_1 and p_arg_2) which a few
messages use. The return value of this routine is unimportant.

IMPORTANT: If you have defined a constant to replace a certain error message
with a complex message, you have to print something for this message.

Printing the Contents of an Object
The standard library provides the routine WriteListFrom(). PunyInform pro-
vides PrintContents() instead. While not as versatile as WriteListFrom, it’s
meant to be easy to use, easy to remember how to use, and powerful enough to
cover the needs for most situations. This is how it works:

PrintContents(p_first_text, p_obj, p_style);
Print what’s in/on p_obj recursively, or decide if there are any
contents to be printed and if so, if they should be prefixed by
"is" or "are".

p_first_text:
A string containing a message to be printed before printing

16

the first item in/on p_obj. Can also be 0 to not print a
text, or a routine, which will then be called with p_obj as
an argument, or 1 to not print anything but investigate
contents (see Return value).

p_obj:
The container/supporter/person whose contents we want to list.

p_style:
Add together 0 or more of the following values:
ISARE_BIT: Print "is " or "are " before the first object.
NEWLINE_BIT: Print a newline before each object and indent objects.
WORKFLAG_BIT: On the top level, only print objects that have the

workflag attribute set.

Return value:
true if any items were printed, false if not.
If p_first_text == 1, instead return the plural-factor for
the printable contents (0 = No contents, 1 = Contains a
single, non-pluralname object, 2 = Contains a pluralname
object or multiple objects.)

Some examples of typical usage:

if(PrintContents("On the table you can see ", OakTable)) print ".";
else print "There’s nothing on the table.";

if(PrintContents("On the table ", OakTable, ISARE_BIT)) print ".";

Direction Handling
The Compass and the twelve direction objects, as described in DM4, are not
available in PunyInform. Instead, there is a single object called Directions and two
global variables called selected_direction and selected_direction_index.
This helps in keeping the object count down, considering that a z3 game can
have no more than 255 objects.

Whenever the player has typed a direction, noun or second is Directions and
selected_direction contains the property number for the direction the player
typed. If the player didn’t type a direction, selected_direction is 0. The name
of the Direction object is always the currently selected direction, or “direction”
if no direction is selected. So, to implement a robot which will stop the player
from going north or east, one might write a react_before routine like this:

Object Robot "Floyd"
with

react_before [;
Go:

if(selected_direction == n_to or e_to)

17

"~My mother always told me to avoid going ",
(name) Directions, ".~, says Floyd.";

],
has animate;

selected_direction_index can be used to look up the property number and
the name of the direction:

! prints the property number, like 8
print direction_properties_array->selected_direction_index;
! prints the direction name, like "north"
print (string) direction_name_array-->selected_direction_index;

Note that direction_properties_array is a byte array and direction_name_array
is a word array. The number of directions is held in the constant DIREC-
TION_COUNT. This is useful if you’re writing a library extension and want to
iterate over all directions in a safe manner. Please note that the directions are
stored in element 1, 2, 3 .. DIRECTION_COUNT in these arrays.

Fake direction objects.
For each direction, there is also a fake direction object: FAKE_N_OBJ,
FAKE_SW_OBJ, FAKE_OUT_OBJ etc. If you need to generate an action
in code which has a direction in it, this requires using the corresponding fake
direction object, like this:

<<Go FAKE_N_OBJ>>;
<<PushDir Stone FAKE_NW_OBJ>>;

If you want to go in a direction and you know the property number for that direc-
tion, you can find the corresponding fake direction object by calling DirPropTo-
FakeObj():

dir_prop = ne_to; ! Or any direction you like
fake_obj = DirPropToFakeObj(dir_prop);
<<Go fake_obj>>;

There is also an inverse of this function, called FakeObjToDirProp().

Each fake direction object is just a constant. PunyInform recognizes these
constants and sets selected_direction and selected_direction_index properly.
As far as we can tell, the only use for the fake direction objects is in actions in
code as outlined above.

Note that AllowPushDir isn’t supported. See the pushdir.inf file in the howto
folder for an example on how to implement pushing in PunyInform.

18

Disabling directions
If you (perhaps temporarily) don’t want the game to recognize any directions,
you can set the global variable normal_directions_enabled to false.

Ship directions
If you define the constant OPTIONAL_SHIP_DIRECTIONS, the parser will
recognize ‘fore’ and ‘f’ as synonyms for north, ‘aft’ and ‘a’ as synonyms for south,
‘port’ and ‘p’ as synonyms for west, and ‘starboard’ and ‘sb’ as synonyms for
east.

If you (temporarily) don’t want the game to recognize ship directions, you can
set the global variable ship_directions_enabled to false.

Look
When performing a Look action, PunyInform, just like the standard library,
prints the room name, a newline and then the description of the room, held in
the description property.

The standard library has a deprecated feature, allowing you to write the text
describing the location in the describe property of the location object rather
than the standard description property. This is not supported by PunyInform.

When deciding how to show objects, these are the rules that apply in PunyInform:

• If the object provides describe, print or run it. If it’s a string, or it’s a
routine and it returns true, the object will not be described any further.
Note that this string or routine should start by printing a newline, unless
it’s a routine which decides not to print anything at all.

• We will now figure out which the current description property of the object
is:

– If the object is a container or a door, it’s when_open or when_closed,
depending on its state.

– If the object is a switchable object, it’s when_on or when_off, de-
pending on its state.

– Otherwise, it’s initial.
• If the object provides this property AND the object hasnt moved or the

property is when_off or when_closed, then print a newline and run or
print the string or routine held in the property.

• If, according to the above rules, nothing has yet been printed, include the
object in the list of objects printed at the end.

• If OPTIONAL_PRINT_SCENERY_CONTENTS has been defined, print
what can be seen in/on containers and supporters which have the scenery
attribute.

19

Note: Thanks to aliasing, PunyInform uses only 27 common properties, which
is 21 less than the Inform 6 library. This is necessary to support compiling to
z3. However, this also means the library can’t tell if an object provides initial,
when_on or when_open - these are in fact all aliases for the same property. For
this reason, the printing rules described above must be a little restrictive. In
fact, the Inform Designer’s Manual, 4th ed. describes rules which are equally
restrictive, since Inform 6 used aliasing as well when the DM4 was released,
but newer versions of the Inform 6 library are actually smarter than the DM4
says and will look at which properties are provided and act accordingly. For
PunyInform, whenever you have problems getting the results you want using
when_on, when_open etc, write the logic you like in a describe routine instead.
That way you can make it work exactly the way you want.

Box Statements and Menus
The box statement is not available in version 3 games, and the usual menu exten-
sions will not work either since version 3 games lack cursor control commands.
Instead PunyInform provides an extension that approximates this functionality.
See the Extensions section for more detail.

Scope
Scope in PunyInform is a list of things you can interact with. This includes
things you can see in the room description, but can also include abstract concepts
such as directions and discussion topics. Two library routines enable you to
see what’s in scope and what isn’t. The first, TestScope(obj, actor), simply
returns true or false according to whether or not obj is in scope. The second
is LoopOverScope(routine, actor) and calls the given routine for each object
in scope. In each case the actor given is optional, and if it’s omitted, scope is
worked out for the player as usual.

The routines ScopeCeiling, LoopOverScope, ScopeWithin and TestScope are
implemented as described in DM4. The ObjectIsUntouchable(obj, flag)
routine returns true if the obj is untouchable from the player’s point of view. If
flag is true, then the routine never writes anything and only returns true or
false to say if the obj was untouchable or not. If flag is false, the routine will
also write messages like “You can’t because . . . is in the way.” when a problem
was found.

The standard Inform parser uses a number of internal scope variables that are
not used in PunyInform, including scope_reason. Code that relies on these
variables has to be rewritten. However, scope_stage is supported and is used
when the scope token is used, so constructs like the code fragment below work
as described in DM4.

Object questions "questions";

20

Object -> "apollo"
with name ’apollo’,

description "Apollo is a Greek god.";

[QueryTopic;
switch (scope_stage) {

1: rfalse;
2: ScopeWithin(questions); rtrue;
3: "At the moment, even the simplest questions confuse you.";

}
];

[QuerySub; noun.description();];
Verb ’what’ * ’is’/’was’ scope=QueryTopic -> Query;

Manual Scope
Normally, PunyInform updates the scope when a turn starts, before the after
routines are run, before the timers and daemons are run, and before each_turn
is run. To get the best possible performance, you can switch to manual scope
updates. You do this by defining the constant OPTIONAL_MANUAL_SCOPE. With
manual scope enabled, scope is only updated when the program signals that an
update may be needed. You signal this by setting the variable scope_modified
to true. A simple rule is to do this anytime you use move or remove or you alter
any of the attributes open, transparent, light. This is already in place in the
PlayerTo routine as well as in the action routines for Open, Close etc. Sample
usage:

Object Teleporter "teleporter"
with

name ’teleporter’,
capacity 1,
before [c;

SwitchOn:
c = child(self);
if(c ~= 0) {

move c to SecretChamber;
scope_modified = true;
print_ret (The) c, " disappears!";

}
],

has container openable transparent;

21

Replacing the Player Object
If you want to define your own player object, you can do so, and define the
constant CUSTOM_PLAYER_OBJECT, setting it to the object ID of the
player object you created. The library will then refrain from creating the default
player object (selfobj).

Parser
The parser is to a large extent compatible with Inform, for exam-
ple wn, NextWord() and NextWordStopped() are implemented, and
noun/second/inp1/inp2/special_number/parsed_number work the same.

General parse routines are supported with the exception of GRP_REPARSE
which isn’t supported. The reason for this is that version 3 games cannot
retokenise the input from the reconstructed string.

Held tokens and automatic take
Just like the Inform 6 parser, the PunyInform parser will try to take an object
that matches a held token. However, it will not try to take an object which has
the static, scenery or animate attribute, with the exception of animate objects
which have been made takeable through the use of a DisallowTakeAnimate
routine. This allows before routines to react to things like “EAT WHALE” and
“ATTACK TROLL WITH STEAMROLLER”. This feature of the parser requires
a little caution, since this means that when before routines are run and even
when the action routine is run, an object that was matched by a held token is
not guaranteed to be in the player’s possession. As a game author, you typically
solve this be adding a line like this at the start of any action routine which uses
a held token: if(ImplicitGrabIfNotHeld(noun)) rtrue;.

ParseToken
The ParseToken library routine may be of limited use, but DM4 gives two exam-
ples of ways to use it. Both these examples can be implemented in PunyInform
as well, but the constants are named differently.

Parsing a number: ParseToken(TT_OBJECT, NUMBER_OBJECT)

Parsing an object that’s in a special scope: ParseToken(TT_SCOPE,
MyScopeRoutine)

Unsupported Properties and Attributes
PunyInform lacks support for a few properties and attributes which the stan-
dard library support: * Properties articles and short_name_indef: These

22

are intended for use with languages other than English, something PunyInform
doesn’t support. * Properties list_together and plural: These are intended
for use with identical objects, something PunyInform doesn’t support. * Propery
number: This property was added to the Inform library before individual proper-
ties were supported. With individual properties available, there is little reason to
define this generic property. If you use it in your code, it’s automatically created
as an individual property. If you use it heavily, you may want to make it a
common property. To do this, just add Property number; right after including
“globals.h”. * Attribute male: If you define an animate object and don’t give
it female or neuter, it will be considered male automatically. This is done to
leave one more attribute free for the game author’s use.

23

Programming Advice

Error messages
The Inform standard veneer routine for printing informative messages for all
sorts of runtime errors that can occur is replaced with a simpler routine in
PunyInform, saving about 1.5 KB. However, the original routine is used if the
constant RUNTIME_ERRORS is set to 2.

Debugging
By defining the constant DEBUG (or adding -D to the inform 6 compiler
commandline), the game is compiled in debug mode. This means a number of
meta verbs are available for inspecting the game world and examining which
routines and actions are executed. These are the debug verbs supplied:

TREE : Show the object tree for the current location. TREE [object] : Show
the object tree for this object.

GONEAR [object] : Teleport to the location of the object.

SCOPE [actor] : List the objects which are currently in scope for the actor.
Actor defaults to player.

PRONOUNS : List what he, she, it and them are currently referring to.

RANDOM [number] : Seed the pseudo-random number generator, to make
randomization predictable. Number defaults to 100.

PURLOIN [object] : Teleport the object into your inventory, no matter where it
is.

ROUTINES [on/off] : Show which routines are being executed.

ACTIONS [on/off] : Show which actions are being invoked.

TIMERS [on/off] : Show which timers and daemons are being executed.

24

DEBUG REACTIVE : Show which object have the reactive attribute but
shouldn’t and which don’t have it but probably should. See The reactive
attribute.

DebugParseNameObject
Some debug verbs take an object or an actor as an argument. The scope for these
verbs are unlimited - they can refer to objects which are in a different location
or even in no location. It can be hard or even impossible for the parser to decide
if an object which doesn’t have a parent is a room or a normal object. This
causes problems when an object has a parse_name routine. If you have problems
referring to an object which has a parse_name routine and may lack a parent in
the object tree, you can create a routine called DebugParseNameObject to help
out. It should return true for every such object and false for other objects. It’s
okay if it returns true for other normal objects, but it must never return true for
a room. Example implementation which returns true for the three objects in the
list and false for all other objects:

#Ifdef DEBUG;
[DebugParseNameObject p_obj;

if(p_obj == RecordPlayer or Record or Robot) rtrue;
else rfalse;

];
#Endif;

Customizing the Library
PunyInform is designed to be as small as possible to run well on old
computers, and some features that add to the size have been made op-
tional. If you want to enable these features, add a line like “Constant
OPTIONAL_GUESS_MISSING_NOUN;” before including globals.h, but keep
in mind that it will make the game larger. You can also change some parameters
in the library from their default values to further adjust the library size as
needed. Finally you can use abbreviations to reduce the game size further.
PunyInform includes a set of standard abbreviations which can be enabled as
needed.

These customizations are described in detail in the following sections.

Optionals
The optional parts of PunyLib can be enabled with these constants:

25

Option Bytes Comment
DEBUG 4068 Enable some debugging verbs for

game development. These include
‘scope’, ‘random’, ‘pronouns’, ‘tree’,
‘purloin’, ‘gonear’, ‘routines’,
‘actions’ and ‘timers’/‘daemons’.

CUSTOM_PLAYER_
OBJECT

- Set it to an object ID and that
object will be used as the player
object, and the default player object
(selfobj) won’t be created.

NO_SCORE -310 Don’t include any code for keeping
track of score. The value of the
constant is shown as the score on
the statusline in z3.

OPTIONAL_SL_NO_
SCORE

-40 Don’t show score on the statusline in
z5+ games. Defining NO_SCORE
will define
OPTIONAL_SL_NO_SCORE
automatically.

OPTIONAL_SL_NO_
MOVES

-36 Don’t show moves on the statusline
in z5+ games.

OPTIONAL_ALLOW_
WRITTEN_NUMBERS

300 Enable parsing of “one”, “two” etc
as numbers.

OPTIONAL_
EXTENDED_
METAVERBS

940 Add a set of less important, but nice
to have, meta verbs to the grammar.

OPTIONAL_
EXTENDED_ VERBSET

2152 Add a set of less important, but nice
to have, verbs to the grammar.

OPTIONAL_FLEXIBLE_
INVENTORY

68 Allow the player to type “inventory
tall/wide” to switch inventory mode.

OPTIONAL_FULL_
DIRECTIONS

112 Include directions NW, SW, NE and
SE. Including them also makes the
parsing process slightly slower in z3
mode.

26

Option Bytes Comment
OPTIONAL_FULL_
SCORE

258 Add the fullscore verb, and optional
support for tasks as described in
DM4. Size grows by another 78
bytes if OPTIONAL_SCORED is
defined.

OPTIONAL_GUESS_
MISSING_NOUN

290 Add code to guess missing parts of
an incomplete input, such as a door
when typing only ‘open’, and
accepting the input with a
“(assuming the wooden door)”
message.

OPTIONAL_MANUAL_
REACTIVE

-44 Leave it to the author to set the
reactive attribute, for faster game
start. See The reactive attribute for
instructions on how to use it.

OPTIONAL_MANUAL_
SCOPE

12 Let the game code say when scope
needs to be updated, for better
performance. See Manual Scope for
instructions on how to use it.

OPTIONAL_NO_
DARKNESS

-360 Skip support for light and darkness -
there is always light everywhere.
Unlike the other optionals, this one
makes the game smaller.

OPTIONAL_ORDERED_
TIMERS

104 Lets you assign an order number
(property timer_order, default =
100) to each timer or daemon,
defining the order of execution - low
numbers execute early.

OPTIONAL_PRINT_
SCENERY_CONTENTS

80 Have Look show what is in/on
containers and supporters which
have the scenery attribute.

OPTIONAL_PROVIDE_
UNDO

212 Add undo functionality (z5 and z8
only).

27

Option Bytes Comment
OPTIONAL_REACTIVE_
PARSE_NAME

8 Let objects which provide
parse_name have the reactive
attribute. See The reactive attribute
for instructions on how to use it.

OPTIONAL_SCORED 28 Add support for the scored attribute
as described in DM4.

OPTIONAL_SIMPLE_
DOORS

86 Allow for a simpler way of defining
doors. This also ends up saving
space if you have more than three
doors that use this mechanism. See
Doors for instructions on how to use
it.

OPTIONAL_SHIP_
DIRECTIONS

92 Add fore, aft, port and starboard as
directions. See Ship Directions for
instructions on how to use it.

Parameters
The parameters listed in the table below can be adjusted in a game by redefining
them before globals.h is included.

Parameter Default Comment
DEFAULT_CAPACITY 100 Default number of items that

can be in a container, on a
supporter or held by a
creature.

MAX_CARRIED 32 Max. number of items the
player can carry at once

MAX_WHICH_OBJECTS 10 Max. number to include in a
“which X do you mean?”
parser question

MAX_MULTIPLE_OBJECTS 32 Max. number of objects that
match “all” in an input such as
“get all”

MAX_INPUT_CHARS 78 Max. number of characters in
one line of input from the
player

MAX_INPUT_WORDS 20 Max. number of words in a
parsed sentence

28

Parameter Default Comment
MAX_FLOATING_OBJECTS 32 Max. number of floating

objects
MAX_TIMERS 32 Max. number of

timers/daemons running at
once

MAX_SCOPE 32 Max. number of objects to
consider when calculating the
scope of the player

RUNTIME_ERRORS 1 or 2 Runtime error reporting: 0 =
minimum, 1 = report all errors
using error codes, 2 = report
all errors using error messages.
Default is 2 in DEBUG mode,
and 1 when not in DEBUG
mode.

Abbreviations
PunyInform can use a set of standard abbreviations to make strings more
compact. If you want to provide your own abbreviations, define the constant
CUSTOM_ABBREVIATIONS in your game. Keep in mind that you need to
compile with the “-e” flag to make the compiler use abbreviations.

Limitations for z3
If you want to compile a game to z3 format, this is what you need to keep in
mind:

• A game can use no more than 30 common properties. PunyInform defines
27 common properties.

• A game can use no more than 32 attributes. PunyInform defines 29 at-
tributes (+1 if OPTIONAL_SCORED is defined, -1 if OPTIONAL_NO_DARKNESS
is defined).

• Arrays in common properties can only hold four values. Arrays in individual
properties however, can hold 32 values.

• When using message passing (like “MyBox.AddWeight(5)”), no more than
one argument may be passed. (In regular Inform, message passing doesn’t
work at all in z3.)

• Routine calls can have no more than three arguments.
• Dynamic object creation and deletion can not be used.
• If you need more than four names for an object in a z3 game, give it a

parse_name routine.
• The room name printed on the statusline is always the object name string.

29

It can’t be overridden with short_name in a class or in the same object.
Read below for a possible workaround.

• It is not possible to support the ‘undo’ verb.
• There is no support for bold or italic text.
• The cursor position can’t be read or set. Among other things, this makes

it impossible to print a menu and let the player move up and down in it
with certain keys.

• It is not possible to wait for the user to press a key, or read a single keypress
- you can only read a whole line of input.

• The interpreter is responsible for displaying the statusline. It will show a
score even if you define NO_SCORE. It’s not possible to hide the statusline.

When the player is inside an object, in a z5 game, the library will print the name
of the object on the statusline, in definite form (“The box”). In a z3 game, the
object name string will be printed as-is, typically like “box”. This behavior in z3
games is part of the Z-machine specification so it’s nothing that the game or the
library can change. If you want a z3 game to print a different name for when
the player is inside the object, you can set the object name string to the desired
name, and override it with short_name for all other uses, like this:

Object box "The box"
with short_name "box"
has container openable enterable;

Properties
A property can be used to store a 16-bit value, or an array of values. In z5, a
property array can hold up to 32 values. In z3, a property array can only hold
4 values if it is in a common property but 32 values if it is in an individual
property.

If a property is declared as additive, the values for an object are concatenated
with the values of its class, if any, and put into an array.

A property can either be common or individual. Common properties are a little
faster to access and use a little less memory than individual properties. A z5 or
z8 game can use a maximum of 62 common properties, while a z3 game can use
a maximum of 30 common properties. PunyInform uses 27 common properties,
so if you’re building a z3 game, you can only add three common properties. The
value of a common property can always be read, but it can only be written if it
has been included in the object declaration. If you don’t include it, there is no
memory allocated to store a value. If you read the value of such a property, you
just get the default value (typically 0).

A common property is created by declaring it with

Property my_property_name;

30

Declaring individual properties is optional, but may result in slightly shorter
code. It’s done with

Property individual my_property_name;

To access a property, you write object.propertyname, like this:

Dog.description = "The dog looks sleepy.";

To check if an object has a value for a property (to see if it can be written if it
is a common property or to see if it can be read or written if it is an individual
property), use provides:

If(Dog provides description) ...

31

Extensions

PunyInform keeps the library code size down by only providing the most fun-
damental functionality by default, but ships with several extensions which can
easily be added to games.

cheap_scenery
(Can also be used with the standard library)

This library extension provides a way to implement simple scenery objects which
can only be examined, using just a single object for the entire game. This helps
keep both the object count and the dynamic memory usage down. For z3 games,
which can only hold a total of 255 objects, this is even more important. To use
it, include ext_cheap_scenery.h after globals.h. Then add a property called
cheap_scenery to the locations where you want to add cheap scenery objects.
You can add up to ten cheap scenery objects to one location in this way, and
even more with CS_ADD_LIST (see below).

For each scenery object specify three values, in this order: an adjective, a noun,
and a reaction string/routine. Instead of an adjective, you may give a synonym
to the noun. If no adjective or synonym is needed, use the value CS_NO_ADJ (
= 1) in that position. For more complex names, give CS_PARSE_NAME (= 2) in
the adjective position and a routine to work like a parse_name routine in the
noun position. Finally, you can add a list stored in a property in the same or
another object, by giving the value CS_ADD_LIST (= 3), followed by an object
ID and a property name (put the property name within parentheses to avoid
compiler warnings). You typically want to use a list like this to give general
descriptions for scenery objects in a group of locations. If you want an exception
for a certain scenery object in one location, just give it a different description
before linking to the general list (See “Example usage” below).

The reaction can be either:

• a string to be used as the description of the object
• a routine which will act as a before routine for the object - this can be used

to trap the Examine action and print a dynamic description of the object,

32

but also to react to any other actions the player may try to perform on
the object.

Note: If you want to use this library extension in a Z-code version 3 game, you
must NOT declare cheap_scenery as a common property, or it will only be able
to hold one scenery object instead of ten. For z5 and z8, you can declare it as a
common property if you like, or let it be an individual property.

If you want to use the same reaction for a scenery object in several locations,
declare a constant to hold that string, and refer to the constant in each location.
Note that if this is a routine, you typically want to end it with default: rfalse;
since a named routine returns true by default, which would lead it to block all
actions which the routine doesn’t handle.

Before including this extension, you can also define a string or routine called
SceneryReply. If you do, it will be used whenever the player does something
to a scenery object other than examining it. If it is a string, it is printed. If
it is a routine it is called. If the routine prints something, it should return
true, otherwise false. The routine is called with three parameters - word1,
word2 and routine. If a line using CS_PARSE_NAME was matched, word1 is
CS_PARSE_NAME, word2 is 0 and routine is the routine address. If the routine
set cs_parse_name_id to a non-zero value, routine holds this value instead of
the routine address. If the line matched didn’t use CS_PARSE_NAME, word1
is the adjective value, word2 is the noun value and routine is 0. Note that
this may not be exactly what the player typed, e.g. the player may have typed
“examine water” but the words listen in the property are ‘blue’ ‘water’. In this
case, word1 will be ‘blue’ and word2 will be ‘water’.

If constant RUNTIME_ERRORS is defined and has a value greater than 0, the exten-
sion will complain about programming mistakes it finds in the cheap_scenery
data in rooms. Otherwise, it will keep silent.

Note: If you include this extension, you must either declare cheap_scenery as
a common property, or use it as an individual property in at least one object, or
you will get a compilation error (No such constant as “cheap_scenery”).

Example usage:

! Cheap Scenery Parse Name constants. Use values 1-600.
Constant CSP_LIBRARY 1;

[SceneryReply word1 word2 routine;
! We can check location, if we want different answers in different rooms
! We can also check action, and there’s even an implicit switch on action,
! so we can do things like: Take: "You’re crazy.";
switch(routine) {
ParseNameAir:

"You need the air to breathe, that’s all.";
CSP_LIBRARY:

33

"The library is super-important. Better not mess with it.";
}
if(location == Library && word1 == ’book’ && word2 == ’books’)

"Leave the books to the people who care about them.";
rfalse;

];

Include "ext_cheap_scenery.h";
Include "puny.h";

[ParseNameAir;
if(NextWord() == ’air’) return 1;
rfalse;

];

[WallDesc;
Examine:

"The walls are ",
(string) random("all white", "claustrophobia-inducing", "scary",

"shiny"), " here.";
default:

rfalse; ! Necessary in a named routine
];

Constant BOOKDESC "You’re not interested in reading.";

Object Library "The Library"
with

description "You are in a big lovely library. You can examine or try to
take the books, the shelves, the library, the air, the walls and
the ceiling.",

cheap_scenery
CS_ADD_LIST Library (inside_scenery)
’book’ ’books’ BOOKDESC
’shelf’ ’shelves’ "They’re full of books."
CS_PARSE_NAME ParseNameAir "The air is oh so thin here."
CS_PARSE_NAME [_i _w;

cs_parse_name_id = CSP_LIBRARY;
_w = NextWord();
if(_w == ’big’) { _i++; _w = NextWord();}
if(_w == ’lovely’) { _i++; _w = NextWord();}
if(_w == ’library’) { _i++; return _i;}
return 0;

] "It’s truly glorious.",
inside_scenery

’wall’ ’walls’ WallDesc

34

CS_NO_ADJ ’ceiling’ "The ceiling is quite high up.",
has light;

flags
(Can also be used with the standard library)

Flags is a mechanism for keeping track of story progression. If you choose to use
flags, four procedures with a total size of about 165 bytes are added to the story
file. Also, an eight byte array is added to static memory, and one byte is added
to dynamic memory for every eight flags. All in all this is a very memory-efficient
way of keeping track of progress.

If you want to use flags, after including globals.h, set the constant FLAG_COUNT
to the number of flags you need, and then include ext_flags.h.

You then specify a constant for each flag, like this:

Constant F_FED_PARROT 0; ! Has the parrot been fed?
Constant F_TICKET_OK 1; ! Has Hildegard booked her plane tickets?
Constant F_SAVED_CAT 2; ! Has the player saved the cat in the tree?

You get the idea – you give each flag a symbolic name so it’s somewhat obvious
what it does. Note that the first flag is flag #0, not flag #1.

Setting a flag on or off means calling the routine SetFlag or ClearFlag

To indicate that the player has saved the cat, call SetFlag(F_SAVED_CAT), and
to turn off that flag, call ClearFlag(F_SAVED_CAT).

Testing a flag is accomplished by calling FlagIsSet or FlagIsClear. So if you
have a piece of code that should only be run if the parrot has been fed, you
would enclose it in an if(FlagIsSet(F_FED_PARROT)) { ... }; statement.

Naturally, you can test if a flag is clear by calling FlagIsClear instead.

talk_menu
(Can also be used with the standard library, when compiling to Z-code)

This extension lets you define a set of topics for each character which the player
can talk to him or her about. The player can type “TALK TO (someone)” and
get a menu of topics they can talk about. Each topic can unlock new topics, set
flags (if you include ext_flags.h), and run routines.

Setup
To use this extension, define a word array called talk_array somewhere in your
source code. For each NPC the player should be able to talk to, add a section
starting with TM_NPC and the NPCs object ID. Then add one or more talk topics.

35

End the array with TM_NPC 0. Also, each NPC which the player should be able
to talk to must provide the property talk_start. In Initialise, add a call to
InitTalk() (see talk_menu initilisation for other options).

Talk topics
A talk topic has the following form:

STATUS [ID] TOPIC PLAYERSAYS NPCSAYS [FLAGREF|UNLOCKREF|ROUTINE]*

• [] = Optional

• * = can be more than one

• STATUS is either 0 (= TM_INACTIVE = not active) or 30 (= TM_ACTIVE
= active) or 31 (= TM_STALE, has been used).

• ID is a number (300-600) which can be used as a reference to activate
the topic in code or using an UNLOCKREF in talk_array. Note that
IDs are local to the NPC - two different NPCs can use the same ID for
different topics without risk of confusion.

• TOPIC is a string or routine for the topic name

• PLAYERSAYS is a string or routine for what the player says

• NPCSAYS is a string or routine for what the NPC replies

• FLAGREF is a number 32-299 for a flag to be set (In order to use this,
you must include ext_flags.h before including ext_talk_menu.h)

• UNLOCKREF is either a topic ID (300-600) or a relative reference to
a topic (1 to 29) that should be activated by this topic. 1 means the
next topic, 2 the topic after that etc. The target topic has to have status
TM_INACTIVE (= 0) or TM_ACTIVE (= 30) for this to work. When a topic
is used, it is set to status TM_STALE, and the only way to change it from
status TM_STALE is to call ReActivateTopic or ReInactivateTopic.

• ROUTINE is the name of a routine to be run. In this routine, the global
variable current_talker refers to the NPC being talked to.

Whenever a routine is used for PLAYERSAYS, NPCSAYS or ROUTINE, it can
set the global talk_menu_talking to false to end the conversation after the
current topic. When doing this, you may want to use ROUTINE to print a
suitable message about why the conversation ended.

A sample talk_array
Example of an array giving Linda one active topic (Weather), which will activate
the next topic (Heat) and the topic with ID 300 (Herself):

36

Array talk_array -->
TM_NPC Linda
0 300 "Herself" "Tell me more about yourself!" "I’m just an average girl."
30 "Weather" "How do you like the weather?" "It’s too hot for me." 1 300
0 "Heat" "Say, don’t you like hot weather?" "No, I prefer it cold."
TM_NPC 0;

Allowing for more flags and/or topic IDs
If you find that you need more topic IDs, or more flags, you can define which
number should be the lowest one to be considered an ID (32-600, default is 300)
by defining the constant TM_FIRST_ID, i.e. to get 100 more IDs and 100 less
flags, do this before including ext_talk_menu.h:

Constant TM_FIRST_ID = 200; ! 32-199 are now flags, while 200-600 are IDs

Should you find that you need both a lot of flags and a lot of topic IDs, you can:

1. Make sure all routines you refer to in talk_array are defined after including
all library files.

2. Set the constant TM_LAST_ID to 2000. Instead of 300-600, you can now
use 300-2000 for topic IDs.

3. In conjuction with this, you can also use TM_FIRST_ID to define where
flags end and topic IDs begin.

talk_menu routines
Apart from activating topics using UNLOCKREFs in the talk_array, you can
also use these routines:

• InitTalk(): Must be called before the player starts their first conversation,
or code calls any of the other procedures. Calling it in Initialise is a good
idea.

• ActivateTopic(NPC, topic), returns true for success, false for fail: Acti-
vates the topic if it’s currently inactive or active (not stale!).

• ReActivateTopic(NPC, topic), returns true for success, false for fail:
Activates the topic, regardless of its status.

• InactivateTopic(NPC, topic), returns true for success, false for fail:
Inactivates the topic if it’s currently inactive or active (not stale!).

• ReInactivateTopic(NPC, topic), returns true for success, false for fail:
Inactivates the topic, regardless of its status.

• GetTopicStatus(NPC, topic), returns topic status (TM_INACTIVE,
TM_ACTIVE or TM_STALE)

If you call these routines with DEBUG defined and RUNTIME_ERRORS > 0 will be
notified whenever a problem is detected. As usual, use RUNTIME_ERRORS = 2 to
get the maximum amount of information (This is the default when compiling in
DEBUG mode).

37

talk_menu initialisation
To initialise the system, either:

• A: (more convenient)
1. In your Initialise routine , call InitTalk() OR

• B: (better performance):
1. Compile the game in DEBUG mode
2. Run the game and type “TALK SETUP”
3. Enter the printed values into the talk_start property for each NPC
4. Define the constant NO_INITTALK to skip the InitTalk routine, as it

won’t be needed.
5. If you add or remove any values in talk_array, comment out the

NO_INITTALK constant and go to step 1 again.

Recommendation: Stick to (A) until your game is ready for release, then switch
to (B). This makes the game start a little faster and saves some bytes.

talk_menu example
There is an example game in the PunyInform distribution that uses the
talk_menu extension, in the file howto/talk_menu.inf.

menu
This is an extension to let games show a menu of text options (for instance,
when producing instructions which have several topics, or when giving clues).
This can be done with the DoMenu routine, which is very similar to the DoMenu
in the standard Inform library. In version 3 mode it will create a simple text
version instead because of technical limitations.

A common way of using DoMenu is from a “help” verb, which can be declared
like so:

Include "ext_menu.h";

! add HelpItem, HelpMenu and HelpInfo here

[HelpSub;
DoMenu(HelpItems, HelpMenu, HelpInfo);

];

Verb ’help’ * -> Help;

Below is how DoMenu was described in the Inform Designer’s Manual, 3rd edition.

38

Extract from DM3
Here is a typical call to DoMenu:

DoMenu("There is information provided on the following:^
^ Instructions for playing
^ The history of this game
^ Credits^",HelpMenu, HelpInfo);

Note the layout, and especially the carriage returns.

The second and third arguments are themselves routines. (Actually the first
argument can also be a routine to print a string instead of the string itself, which
might be useful for adaptive hints.) The HelpMenu routine is supposed to look
at the variable menu_item. In the case when this is zero, it should return the
number of entries in the menu (3 in the example). In any case it should set
item_name to the title for the page of information for that item; and item_width
to its length(*) in characters (this is used to centre titles on the screen). In the
case of item 0, the title should be that for the whole menu.

The second routine, HelpInfo above, should simply look at menu_item (1 to 3
above) and print the text for that selection. After this returns, normally the
game prints “Press [Space] to return to menu” but if the value 2 is returned it
doesn’t wait, and if the value 3 is returned it automatically quits the menu as if
Q had been pressed. This is useful for juggling submenus about. Menu items
can safely launch whole new menus, and it is easy to make a tree of these (which
will be needed when it comes to providing hints across any size of game).

(*) DM3 actually says to set item_width to half the length of the title. This
looks like a bug and makes using menus unintuitive, so we decided to change
this for ext_menu. However, if you’re making a game that should be compilable
with either PunyInform and its menu extension or the standard library where
DoMenu is included, you may want to use the standard library behaviour on
item_width. In this case, define the constant EXT_MENU_STDLIB_MODE
before including this extension.

quote_box
This is an extension to let games show a simple quote box. For z5+ games, the
extension will try to center the quote box on the screen, by reading the screen
width reported by the interpreter in the header.

For z3, this information is not available. Instead, it can do it two ways: 1. The
game programmer tells the extension to assume the screen has a certain width
and the extension uses this information to center the quote box. 2. The game
programmer tells the extension to just indent the quote box a fixed number of
characters.

39

To use (1), set the constant QUOTE_V3_SCREEN_WIDTH to the desired
width, which has to be > 6.

To use (2), set the constant QUOTE_V3_SCREEN_WIDTH to the desired
number of characters to indent by, which must be in the range 0-6.

By default, method (2) will be used, with 2 characters of indentation.

To display a quote box, create a word array holding the number of lines, the
number of characters in the longest line, and then a string per line, and call
QuoteBox with the array name as the argument.

Include "ext_quote_box.h";

Array quote_1 --> 5 35
"When I die, I want to go peacefully"
"in my sleep like my grandfather."
"Not screaming in terror, like the"
"passengers in his car."
" -- Jack Handey";
!
[AnyRoutine;

QuoteBox(quote_1);
];

waittime
This extension gives players an extended Wait command, which can be used to
wait a certain number of turns, minutes or hours, or to wait until a certain time
of day is reached.

In a game showing time on the statusline, the player can use commands such as:

>wait for 5 minutes
>wait 1 hour
>wait until 1:20
>wait till three o’clock
>wait till quarter to five
>wait till 5 am
>wait 3 turns/moves

A turn or a move may be the same as a minute, depending on the time scale
(how many minutes the clock is advanced per turn, or how many moves it takes
before the clock is advanced one minute).

Note: Using words for numbers requires OPTIONAL_ALLOW_WRITTEN_NUMBERS.

While the player is waiting, the global variable waittime_waiting has the value
true. A daemon or each_turn routine may show an event which could make

40

the player want to abort the waiting and spring to action. If this happens, set
waittime_waiting to false.

If game time is suddenly changed, typically using a SetTime() call, it is a good
idea to abort any ongoing waiting.

This extension also includes the parse routine parsetime to parse times of day,
like “1:20”, “quarter to five”, “3:10 pm” etc, which can also be used for other
verbs which need this, like setting a watch or clock. The parsed time (in minutes
after midnight) comes in noun or second.

In a game showing score/turns on the statusline, the commands to wait for a
certain number of turns, minutes or hours still work. A minute is considered
the same as a turn. The command to wait until a certain time of day is not
available, and neither is the parsetime routine.

This extension must be included after including “puny.h”. Before including it, you
may define the constants MAX_WAIT_MINUES and MAX_WAIT_MOVES
to say how long the player is allowed to wait for using a single command.

41

Appendix A: List of
Routines

PunyInform defines both public and private routines. The private routines are
prefixed with an underscore (for example, _ParsePattern) and should not be
used by a game developer. The public routines do not have this prefix, and are
for general use. Most of the public routines work the same, or in a very similar
manner, to corresponding routines in DM4, but PunyInform also offers a few
extra routines not available in Inform. All public routines are listed below in
this section.

Library Routines
These library routines are supported by PunyInform, as described in DM4.

Library Routine Comment
Banner
CommonAncestor
DrawStatusLine Not available in version 3 games
IndirectlyContains
LoopOverScope
MoveFloatingObjects
NextWord
NextWordStopped
ObjectIsUntouchable
PlayerTo
ParseToken See ParseToken
PlaceInScope
PronounNotice
SetTime
ScopeWithin
TestScope
TryNumber

42

Library Routine Comment
WordAddress
WordLength
WordValue
YesOrNo

These library routines are not supported

Library Routine Comment
AllowPushDir See Direction Handling

Entry Point Routines
These entry point routines are supported by PunyInform, as described in the
DM4.

Entry Point Routine Comment
AfterLife
AfterPrompt
Amusing
BeforeParsing
ChooseObjects
DarkToDark
DeathMessage
GamePostRoutine
GamePreRoutine
Initialise Mandatory.
InScope The et_flag isn’t supported.
LookRoutine
NewRoom
ParseNoun Unlike in the standard library, this is

called before the parse_name
property.

ParseNumber
PrintRank OPTIONAL_FULL_SCORE
PrintTaskName OPTIONAL_FULL_SCORE +

TASKS_PROVIDED
PrintVerb
TimePasses
UnknownVerb

These entry point routines are not supported

43

Entry Point Routine Comment
ParserError The parser internals differ too much

PunyInform Entry Point Routines
These entry point routines are supported by PunyInform, but not by the standard
library.

Entry Point Routine Comment
DebugParseNameObject See DebugParseNameObject
DisallowTakeAnimate See Animate Objects
LibraryMessages See Library Messages and Customization

Additional Public Routines
These routines are supported by both the standard library and PunyInform, but
are not documented in DM4.

Routine Name Comment
NumberWord
NumberWords
PrintOrRun
RunRoutines
CTheyreorThats Printing-rule
IsOrAre Printing-rule
ItorThem Printing-rule
ThatOrThose Printing-rule

PunyInform Public Routines
These public routines are provided by PunyInform, but not by the standard
library.

Routine Name Comment
CObjIs Printing-rule
FastSpaces Prints the specified number of spaces

in an efficient manner.
ImplicitDisrobeIfWorn Take off the object if worn by actor,

which must be player

44

Routine Name Comment
ImplicitGrabIfNotHeld Take the object if not held by actor,

which must be player
OnOff Printing-rule
ObjectCapacity See Capacity
PrintContents See Printing the Contents of an

Object
PrintMsg
RunTimeError

45

Appendix B: List of
Properties

These are the properties defined by the library:

Property Read more below
add_to_scope
after
article
before
cant_go
capacity Y
d_to
daemon
describe
description
door_dir
door_to
each_turn
e_to
found_in
in_to
initial
inside_description
invent
life
n_to
name
ne_to
nw_to
orders
out_to
parse_name Y

46

Property Read more below
react_after
react_before
s_to
se_to
short_name
sw_to
time_left
time_out
timer_order Y
u_to
w_to
when_closed
when_off
when_on
when_open
with_key Y

The properties articles, list_together, number, plural and short_name_indef,
which are supported by the Inform 6 library, are not supported by PunyInform.

• The capacity property doesn’t have a default value in PunyInform. To
check the capacity of an object, call ObjectCapacity(object). If the
object has a value, it’s returned (unless the value is a routine, in which
case it is executed and the return value is returned). If the object doesn’t
have a value for capacity, the value DEFAULT_CAPACITY is returned. This
value is 100, unless you have defined it to be something else.

• The parse_name property works as described in DM4 except that, since
PunyInform doesn’t support identical objects, it is never called to check
whether or not two objects which share the same parse_name routine are
identical.

• timer_order is only used if OPTIONAL_ORDERED_TIMERS is defined. It
is an individual property, unless you declare it as a common property
using Property timer_order;. Read more about ordered timers under
Daemons and timers.

• The with_key property can also hold a routine. The routine should return
false or the object id of the key that fits the lock. When this routine is
called, second holds the object currently being considered as a key. This
can be used to allow multiple keys fit a lock.

47

Appendix C: List of
Attributes

These attributes are the same as in DM4.

Attribute Read more below
absent
animate
clothing
concealed
container
door
edible
enterable
female
general
light Y
lockable
locked
moved Y
neuter
on
open
openable
pluralname
proper
scored Y
scenery
static
supporter
switchable
talkable
transparent
visited

48

Attribute Read more below
workflag
worn

• light is not defined if OPTIONAL_NO_DARKNESS is defined.
• scored is only defined if OPTIONAL_SCORED is defined.
• For moved to be updated and scored to be considered, you need to set

update_moved to true whenever moving objects into the player’s possession
in code. See Moving objects.

These attributes are used in the Inform standard library and are listed in DM4,
but are not used in PunyInform.

Attribute Comment
male not needed, assumed if an object is

animate and it is not female or neuter

These attributes are used in PunyInform but not in the Inform standard library.

Attribute Comment
reactive See The reactive attribute for instructions

49

Appendix D: List of
Variables

These variables are the same as in DM4.

Variable
action
actor
consult_from
consult_words
deadflag
herobj
himobj
inp1
inp2
inventory_stage
itobj
keep_silent
location
lookmode
num_words
parsed_number
parser_action
real_location
scope_stage
score
second
special_number
verb_word
verb_wordnum
wn

These variables are PunyInform only.

50

Variable

These variables are used in the Inform standard library and are listed in DM4,
but are not used in PunyInform.

Variable
c_style
et_flag
listing_together
lm_n
lm_o
notify_mode
parser_one
parser_two
scope_reason
standard_interpreter
the_time
vague_object

51

Appendix E: List of
Constants

These constants are the same as in DM4.

Constant Name
AMUSING_PROVIDED
GPR_FAIL
GPR_MULTIPLE
GPR_NUMBER
GPR_PREPOSITION
GPR_REPARSE
Headline
MAX_CARRIED
MAX_SCORE
MAX_TIMERS
NUMBER_TASKS
OBJECT_SCORE
ROOM_SCORE
SACK_OBJECT
Story
TASKS_PROVIDED

These constants are used in the Inform standard library and are listed in DM4,
but are not used in PunyInform. Most of them are parser specific for the standard
lib, and the PunyInform parser works differently.

Constant Name
ANIMA_PE
ASKSCOPE_PE
CANTSEE_PE
EACHTURN_REASON

52

Constant Name
ELEMENTARY_TT
EXCEPT_PE
ITGONE_PE
JUNKAFTER_PE
LOOPOVERSCOPE_REASON
MMULTI_PE
MULTI_PE
NO_PLACES
NOTHELD_PE
NOTHING_PE
NUMBER_PE
PARSING_REASON
REACT_AFTER_REASON
REACT_BEFORE_REASON
SCENERY_PE
SCOPE_TT
STUCK_PE
TALKING_REASON
TESTSCOPE_REASON
TOOFEW_PE
TOOLIT_PE
UPTO_PE
USE_MODULES
VAGUE_PE
VERB_PE

53

Appendix F: Grammar

Here are the standard verbs defined in the library.

Verbs
answer say speak
ask
attack break crack destroy
climb scale
close cover shut
cut chop prune slice
dig
drink sip swallow
drop discard throw
eat
enter cross
examine x
exit out outside
fill
get
give feed offer pay
go run walk
insert
inventory inv i
jump hop skip
leave
listen hear
lock
look l
open uncover unwrap
pick
pull drag
push clear move press shift
put place
read

54

Verbs
remove
rub clean dust polish scrub
search
shed disrobe doff
shout scream yell
show display present
sit lie
smell sniff
stand
switch
take carry hold
tell
tie attach fasten fix
touch feel fondle grope
turn rotate screw twist unscrew
unlock
wait z
wear don

This set of extended verbs are not included by default, but can be added by
defining OPTIONAL_EXTENDED_VERBSET.

Verbs Comment
blow OPTIONAL_EXTENDED_VERBSET
bother curses darn drat OPTIONAL_EXTENDED_VERBSET
burn light OPTIONAL_EXTENDED_VERBSET
buy purchase OPTIONAL_EXTENDED_VERBSET
consult OPTIONAL_EXTENDED_VERBSET
empty OPTIONAL_EXTENDED_VERBSET
in inside OPTIONAL_EXTENDED_VERBSET
kiss embrace hug OPTIONAL_EXTENDED_VERBSET
no OPTIONAL_EXTENDED_VERBSET
peel OPTIONAL_EXTENDED_VERBSET
pray OPTIONAL_EXTENDED_VERBSET
pry prise prize lever jemmy force OPTIONAL_EXTENDED_VERBSET
set adjust OPTIONAL_EXTENDED_VERBSET
shit damn fuck sod OPTIONAL_EXTENDED_VERBSET
sing OPTIONAL_EXTENDED_VERBSET
sleep nap OPTIONAL_EXTENDED_VERBSET
sorry OPTIONAL_EXTENDED_VERBSET
squeeze squash OPTIONAL_EXTENDED_VERBSET
swim dive OPTIONAL_EXTENDED_VERBSET

55

Verbs Comment
swing OPTIONAL_EXTENDED_VERBSET
taste OPTIONAL_EXTENDED_VERBSET
think OPTIONAL_EXTENDED_VERBSET
transfer OPTIONAL_EXTENDED_VERBSET
wake awake awaken OPTIONAL_EXTENDED_VERBSET
wave OPTIONAL_EXTENDED_VERBSET
yes y OPTIONAL_EXTENDED_VERBSET

This set of PunyInform debug verbs are not included by default, but can be
added by defining DEBUG.

Verbs Comment
actions DEBUG
gonear DEBUG
pronouns nouns DEBUG
purloin DEBUG
random DEBUG
routines messages DEBUG
scope DEBUG
timers daemons DEBUG
tree DEBUG

These debug verbs defined in the library are not supported by PunyInform.

Verbs Comment
abstract not in PunyInform
changes not in PunyInform
goto not in PunyInform
showobj not in PunyInform
showverb not in PunyInform
trace not in PunyInform

These are the meta verbs. Some are only included when OPTIONAL_EXTENDED_METAVERBS
is defined, and some are not defined if NO_PLACES is defined.

Verbs Comment
brief normal
fullscore full
noscript unscript OPTIONAL_EXTENDED_METAVERBS

56

Verbs Comment
notify
objects OPTIONAL_EXTENDED_METAVERBS and not NO_PLACES
places OPTIONAL_EXTENDED_METAVERBS and not NO_PLACES
quit q die
recording OPTIONAL_EXTENDED_METAVERBS
replay OPTIONAL_EXTENDED_METAVERBS
restart
restore
save
score
script transcript OPTIONAL_EXTENDED_METAVERBS
superbrief short
verify OPTIONAL_EXTENDED_METAVERBS
verbose long
version

57

	Introduction
	Comparison with the Inform 6 Standard Library
	Getting Started
	Actions
	The basic actions
	OPTIONAL_EXTENDED_VERBSET actions
	OPTIONAL_EXTENDED_METAVERBS actions
	DEBUG actions
	UNDO
	Implicit actions

	Moving objects
	Animate objects
	Articles
	Plural
	Inventory
	Giving Orders
	Changing the Player
	Capacity
	Doors
	Simple doors
	The with_key property

	Daemons and Timers
	The reactive attribute
	Statusline
	Scoring
	Moves / Turns
	Library Messages and Customization
	Printing the Contents of an Object
	Direction Handling
	Fake direction objects.
	Disabling directions
	Ship directions

	Look
	Box Statements and Menus
	Scope
	Manual Scope

	Replacing the Player Object
	Parser
	Held tokens and automatic take
	ParseToken

	Unsupported Properties and Attributes

	Programming Advice
	Error messages
	Debugging
	DebugParseNameObject

	Customizing the Library
	Optionals
	Parameters
	Abbreviations

	Limitations for z3
	Properties

	Extensions
	cheap_scenery
	flags
	talk_menu
	Setup
	Talk topics
	A sample talk_array
	Allowing for more flags and/or topic IDs
	talk_menu routines
	talk_menu initialisation
	talk_menu example

	menu
	Extract from DM3

	quote_box
	waittime

	Appendix A: List of Routines
	Library Routines
	Entry Point Routines
	PunyInform Entry Point Routines
	Additional Public Routines
	PunyInform Public Routines

	Appendix B: List of Properties
	Appendix C: List of Attributes
	Appendix D: List of Variables
	Appendix E: List of Constants
	Appendix F: Grammar

