
By Hugo Labrande
Issue #8 : Browser-based graphical text adventures

This month's article is another technical article, outlining a way for you to make retro
graphical text adventures in a browser. Adventuron is already fairly established in
that niche, but the path I'll be talking about here uses Inform 6, and its very powerful
parser, and has the ability to sprinkle in some JavaScript if you want more advanced
features. It is one of the only ways to have an Inform 6 game with pictures, and while
there is very little chance it'll ever run on a retro computer, the fact that it can run in
a browser makes it very easy to share. Highly recommended for your own games, or
if you want to make a browser remake of an old game!

Quick Vorple introduction

Vorple is a very interesting tool created by Juhana Leinonen to augment Inform's
capabilities. The homepage is here:

https://vorple-if.com/
The basic idea is that there is a regular interpreter in a browser, that can also
interpret JavaScript/CSS commands started within the story file with a special
function. This means you can write Inform code that controls the game logic and is
able to communicate with the browser, tell it to change the layout, execute a complex
function, or even recover information from Wikipedia or any other server! There are a
few functions built in the Vorple libraries, but you can do anything if you know
JavaScript. If you don't, that's fine: today's tutorial doesn't require you to know
anything about JS.

https://vorple-if.com/

(Note that, for now, this tutorial doesn’t work with PunyInform: Vorple is only
compatible with Glulx, and PunyInform is not compatible with Glulx. It’s not hard to
go from PunyInform to the standard I6 library and vice-versa: there’s only a few
adaptations that you need to do to your code, and they are detailed in the PunyInform
manual. Sorry!)

Vorple requires a little bit of setting up, but not too much; ultimately, it's just a set of
extensions and a custom interpreter. First, start by downloading the contents of this
Github repository:

github.com/vorple/inform6
The ".h" files are the extensions; we will only require "vorple.h" (core library),
"vorple-multimedia.h" (pictures), and "vorple-status-line.h". They need to be included
in your Inform source file, as follows:

Include "vorple.h";
Include "Parser";
Include "VerbLib";
Include "vorple-multimedia.h";
Include "vorple-status-line.h";

Another thing you have to do is edit the "play.html" file; this is the one that runs your
game in the javascript interpreter. Edit it so the line story: "test.ulx" refers to
your game. For now Vorple is only compatible with Glulx, which means you have to
specify the "-G" option when compiling; the result should be a "game.ulx" file. Finally,
note that there is a "resources" folder; we will look into that soon.

One major thing to note about Vorple is that double-clicking on the html file will not
launch the game correctly. (You’ll get a server error!) In order to run, the html file
needs to be fed through an HTTP server. There are several solutions to this: zip your
whole folder and upload it to your itch.io account; make the whole folder sync to your
Dropbox/OneDrive and access it through your Dropbox/OneDrive account in a
browser; or run a local HTTP server on your computer ("python3 -m http.server"
in a terminal, for instance).

Once all of this is setup, you should hopefully get a successful compilation, and
manage to have your game run in the browser. Let's add pictures!

Integrating pictures

The basic idea to integrate pictures above the scrolling text, like in a classic
graphical text adventure, is to put the image in the status line, which by default is an
element sitting at the top of the window and under which the scrolling text
disappears. We thus need to insert the picture of the location in the status line every
time the status line is drawn.

The way Vorple handles status line refreshes is by looking for, and executing, any
code attached to this event; by default, this is just the regular status line. To attach
code to be executed every time the status line is refreshed, you need to put it in an
object, and put this object in the "StatusLineRulebook"; each turn, Inform will look at
all the objects in that rulebook and run their code. Our particular code will need to
switch focus to the center of the status bar, do its thing, then give back focus.
Something like this:

http://github.com/vorple/inform6

Object MyStatusLineRule "" StatusLineRulebook,
 with description [;
 ! erase the contents in the old status line
 VorpleStatusLineClear();

 ! Put the "cursor" at the center of the status line
 VorpleSetOutputFocus("status-line-middle");

 ! Do something here

 ! Put the cursor back in the text zone
 VorpleSetOutputFocusMainWindow();
];

Let's leave this code for now, and look into how to specify a picture corresponding to
each location. Inform 6 is an object-oriented language, so anything we tie to an object
should be contained to that object; meaning, the best way is to specify inside the
location object which picture should be displayed. I'll create a property named
"imageName" inside each location, and give the path to the image file; this path should
be relative to the base folder for images, which by default (you can edit "play.html" if
you want) is "resources/images". My code looks like this:

Object aztecPyramid "Aztec Pyramid"
 with description "You climb the last few steps, wipe the sweat off
your brow, and look at the surrounding jungle.",
 imageName "pyramid.png";

Object jungle "In the jungle"
 with description "The humid heat sticks o your clothes.",
 imageName "jungle.png";

We can then fill in the blank in the rule we had set up before:

Object MyStatusLineRule "" StatusLineRulebook,
 with description [;
 ! erase the contents in the old status line
 VorpleStatusLineClear();
 ! Put the "cursor" at the center of the status line
 VorpleSetOutputFocus("status-line-middle");
 ! Display the location’s image
 VorpleImage(location.imageName, "", IMAGE_CENTERED);
 ! Put the cursor back in the text zone
 VorpleSetOutputFocusMainWindow();
];

Note that because of the way the elements are arranged on the page, you might need
to pad your text area so no text is ever displayed under the picture. (A symptom of
this is if you have just a picture, and no intro text showing.) Adding the command

VorpleExecuteJavaScriptCommand("$('#window0').css('margin-top',
'320px');");
at the end of your “Initialise” function should do the trick, though you might have to
tweak the pixel value depending on the height of your pictures.

That's it!

And that's enough for today! Should you want to go further, I'll leave the following as
exercises:

• make your images looping GIF files (for instance, water dripping from leaves in
the jungle) and display them;

• add your own CSS file to the page and change the font to a retro font of your
choice, such as “Press Start 2P”

• if you prefer Inform 7, port this code to it (or ask me, I have it somewhere!);
• make imageName a routine that returns a different image name depending on

whether it's day or night in your game;
• add more graphical elements to the interface, such as a compass that updates

at every room;
• use Electron to create an executable version of your game so it can run on

Windows and be sold on Steam (it's not too hard, ask me!).

Vorple is a really great tool to augment text adventures; I hope this month's article
will have sparked some interest and make you want to experiment further with it!

