
By Hugo Labrande
Issue #10 : Saving and checkpointing

If you write a game using an engine such as the Z-Machine, the Quill, or PAWS, you 
usually don't have to think about saving and loading/restoring, as these engines 
typically handle such functionalities. But as it turns out, there are several tricky 
issues related to saving and restoring, which sometimes intersect with technical 
limitations and game design. So I thought it would be an interesting topic for this 
month's issue!

And, as usual, I'll start with what I know best, which is the Z-Machine - but don't 
worry, we'll broaden the scope to tape-based games too!

How the Z-Machine handles save games

Here is a high-level explanation of how Infocom’s Z-Machine handles saved games. 
The Z-Machine has several memory sections: static memory and dynamic memory. 
Static memory typically contains immutable things such as the game's strings and 
code; dynamic memory contains things like variables and the current object tree. The
Z-Machine interpreter also has a stack (with temporary variables, function calls, etc.)
and the Program Counter (pointing to the next instruction that needs to be executed).
When you save a game, what it does is essentially save the dynamic memory, the 
stack, and the Program Counter to a file; when you restore, all of these are imported 
to populate the interpreter’s memory. It kind of is the equivalent of "save states" in an
emulator, where the state of the stack, registers, etc, is saved, and restoring is made 
by initializing all the memory zones with the saved data, then letting emulation take 
it from there.

This is conceptually simple (you are emulating a machine and cryo-freezing the state 
of the machine) and provides a general solution that works across every game; but it 
also creates some problems. The main problem is that the saves are tied to a 
particular game file. Well, you could say, that's ok, I don't expect my Arkanoid save to 
work for my Krakout disk image, right? Of course, but it's actually worse than that: if 
you fix a bug or a typo in a game, this creates a different game file (it can change the 
internal addresses of strings, for instance), and all previous saves need to be 
discarded. This is a problem when writing and testing your own game, but also a 
problem for players in this day and age: most games nowadays, especially ones 
distributed on digital platforms, are routinely and silently patched, without 
destroying the player's saves. The market has changed, and the player's expectations 
too, which means you likely need to implement a different saving system. (And 
unfortunately, this cannot be done reliably in Z-Machine games; you might be able to 
figure something out on some machines, but not all interpreters will support it, 
especially not Infocom's, as this was all added to the Z-Machine standard later.)

But there's good reasons, in general, in an adventure game, why saving across 
several versions of a game is a complicated problem. If you're fixing a typo, and 
otherwise not affecting the puzzle structure, there shouldn't be any problem. (But 
even if you don’t change the puzzle structure, there could be issues: what if you 



change the score associated with a sub-goal? What if you add "achievements"? What 
if you add new "flags" tracking if a player has done something or not? In all of these 
situations, if the player saved past the part you have changed, there will be some 
inconsistencies or missed content.) But if you're fixing a bug, like the player was not 
supposed to have grabbed a particular object so easily, how do you reconcile this with
saves where the player has that object? Changes and fixes to the game can make 
some player states incoherent with the new game, which is a very tricky issue to 
solve and probably can only be solved on a case-by-case basis.

If you want to dig deeper into that, the following links are interesting:
https://intfiction.org/t/savegame-backwards-compatibility/8914
https://eblong.com/zarf/glk/save-files-break.html

What about checkpointing?

Another thing I havent mentioned in the previous part is that the fact that a save 
game is game-specific means you can't carry saves over to a new game, or make a 
two-part game where the save is used to initialise the second part. Carrying a save 
between a game and its sequel hasn't been done very often (a recent example that 
comes to mind is Mass Effect and its sequel Mass Effect 2), but it is a question that 
comes back from time to time on forums. But there are quite a few two-part tape-
based text adventures from the 1980s and 1990s that actually implemented that: at 
the end of part 1, please insert a tape so your data can be saved, then your data 
(including your score so far) will be imported at the beginning of part 2. Examples of 
this are Dragon Slayer by Martin Freemantle, The Fisher King by Dennis Francombe,
and Jester's Jaunt by June Rowe and Payl Cardin (where the game actually lets you 
look around for a while before loading your tape data), and many more. Let’s look at 
the PAWS manual (more precisely, the Notebook) on how this works:

https://www.mocagh.org/miscgame/paws-alt-notebook.pdf
It’s on page 23, and the mechanism is explained: the flags are carried between both 
games; you need the same number of locations in both parts, and the same number of
objects, and the objects that can be carried forward between parts need to have the 
same description. If you abide by these rules, when arriving at the final location of 
part 1, the player is prompted to save their position, then part 2 needs to be loaded, 
and when this is done the player character is transported to the new location 1. This 
system is still a bit rigid, but here you see an advantage of the PAWS’s database 
format (where objects and flags and such are stored in databases) versus Infocom’s 
Z-Machine format (with addresses, a stack, etc.): the latter is more flexible, but it 
means it is hard to find a common structure between two games. (Hard, but maybe 
not impossible – but Infocom never looked into it, presumably because the Z-Machine
essentially requires disks and never ran on tapes.) In any case, even if this solution 
was doable in PAWS, it sounds like saving your position to tape was seen as a time-
consuming inconvenience by players...

An alternative that was popular at the time for multi-part games was passwords: at 
the end of part 1, you get a password, and you need to enter it to unlock part 2. 
There were a lot of Spectrum games using this system (from Gareth Pitchford's 
Twilight Inventory: Diarmid, Dreamare, The Black Knight, etc. - but there were 
dozens more), and the system was also used more recently in Davide Bucci's games 
like The Queen's Footsteps. (How to set it up in PAWS is explained on page 22 of the 
PAWS Notebook linked above.) This requires, however, to design the game a certain 
way, and have "bottleneck points": points in the scenario where the story must always
be the same, and the inventory is the same, so a password can in essence teleport 
you to that immutable point of the story. (This often implies giving a justification for 
why your inventory is changed or pared down to a few specific objects: a different 

https://intfiction.org/t/savegame-backwards-compatibility/8914
http://8bitag.com/
https://www.mocagh.org/miscgame/paws-alt-notebook.pdf
https://eblong.com/zarf/glk/save-files-break.html


day, player has been captured and jailed, etc.) This is a good design compromise, 
since most games follow the model of a linear story with defined story beats (like 
most point-and-click adventure games too, really), but wouldn't work for other 
games, such as Infocom's Deadline, which cannot be broken down in several parts. 
Note that such a multi-part design also helps with the update problem mentioned 
above: a message like "sorry, the game has been updated since you last played, you 
have to restart to the beginning of the section you were in" might be a good 
compromise for modern players.

I wanted to finish this article by mentioning a hybrid system, which to my knowledge 
doesn’t seem to have been implemented in very many text adventures, but was 
actually very common in other games. The hybrid system would be of a game with 
several parts that are password-gated, but with several passwords possible, each 
giving a different starting situation. An example of this was The Black Tower, by 
Diane Rice, where the password given at the end of part 1 could be different 
depending on the objects you are carrying at the time; also Nether Regions, by 
Gareth Pitchford, and possibly more. This system requires a system to generate 
passwords from the data, and maybe add a bit of obfuscation so players cannot guess 
the passwords; it could be as simple as chaining conditional statements to determine 
which state the player is in, and give a custom password in each of these cases. But 
note that with the right encoding, any information can be carried in these kinds of 
passwords: flags (like ones indicating whether an object is in inventory or whether a 
task has been performed by the player), but also the number of turns, the score, the 
number of coins, health and mana points, etc. Such password schemes were actually 
extremely common in early NES games, where no battery saves were included in the 
cartridge; and it's actually a very interesting topic if you enjoy encoding, reverse-
engineering, and obfuscation. As a good example, the following video explains how 
passwords are generated in Castlevania II, and hold information from the items 
unlocked to the number of garlics carried:

https://www.youtube.com/watch?v=_3ve0YEQEMw

I think this basically concludes this month's article! We've seen a few models involved
in saving player progress in a text adventures, and the implications of each of these. I
hope you found the article interesting! And if you know of any more saving schemes, 
or examples of games that I would have missed, don't hesitate to let me know!

https://www.youtube.com/watch?v=_3ve0YEQEMw

