Introduction

[Authors Note: All references to payment in the following document are null and void, I hereby release this document and the accompanying source code to the public domain. Bon appetit!

Please note that all references to TADS do not infringe on the current TADS system and have no connection with it. This document was originally prepared not long after ADVSYS appeared in BYTE magazine, and thus my usage probably predated TADS by some time. However I formally release any and all claims to the name, if I ever had any.

The program skeleton referred to in the document does not actually exist, I never got around to writing it.

Roger Plowman 09/17/96]

	First, a legal note. TADS is a group of programming disciplines for the ADVSYS programming language. ADVSYS was written by David Betz in 1986, and Lirri Software had no hand in, nor connection with, David Betz during development of ADVSYS, or anytime thereafter. David Betz retains all rights to ADVSYS, and Lirri Software makes no claims to the contrary.

	Lirri Software has included a full unmodified copy of ADVSYS free of charge, according to the copyright notices included with ADVSYS. No modifications of any kind were peformed on ADVSYS itself, nor has the customer paid any fee for the ADVSYS language compiler and interpreter.

	Having said that, exactly what is it you have purchased?

	You have purchased the TADS system, standing for Text Adventure Development System. TADS is a collection of many different things. First, there's Quest, a full-blown, commercial quality text adventure game. Quest itself is well worth the purchase price, even if you never intend to write your own games. Quest will provide any player with hours of classic dungeon crawling in the best traditions of Zork or Adventure.

	Second, you get the complete source code to Quest. This source code has been exhaustively commented so you can easily follow what's going on.

	Third, you get a complete set of skeleton programs to write fantasy adventure games with. ADVSYS contains only a tiny sample program to learn by. TADS contains not only the Quest source code, but also a ready-to-use skeleton, with all the "nuts and bolts" coding done for you. Just add your own scenery, actors, and objects, following easy to use template objects.

	And lastly you get three complete tutorials, one on ADVSYS itself, one on the Quest program, and lastly one on the program skeleton, showing all the ins and outs. There's even a cheat sheet for Quest (but don't use it unless you have to!).

	In short, TADS is to ADVSYS what a program is to C or Basic, the application on top of the language. If you bought TADS just to play the Quest game, stop reading now. Play the game, and enjoy yourself.

	If you bought TADS to write text adventures, play Quest first to see just how sophisticated your programs can be. Then read the tutorials and tear into the Quest source code to see how it's done. And enjoy.

ADVSYS - A Programming Language

	ADVSYS is an odd language, based more on the LISP object-oriented paradigm than the more traditional procedural approach of C or Basic. When dealing with text adventures this approach is more useful, but has a steep learning curve, especially for programmers used to the traditional languages.

	The learning curve has two aspects, the syntax of the language itself, and the nature of how you do things. First, let's examine the syntax of a simple counter statement, to add 1 to a variable. In Basic this would be:

	A=A+1

	In ADVSYS the same statement is:

	(setq A (+ A 1))

	As you can see, it doesn't even look remotely the same. But before C or Basic snobs curl their lip at the awkward syntax (and it can be very awkward), please remember this is an isolated example. Over all, for writing text adventures, ADVSYS is far and away the superior choice. This has to do with the second aspect of the learning curve, object orientation.

Object Orientation

	Object orientation breaks down into a few core ideas. The first is containment, often called the "black box" approach. Containment is primarily concerned with eliminating unwanted interaction between objects. Containment theory says that objects own their internal resources, and that the only way for one of these internal resources to be used is to have the object do it. This means, for example, the only way for a battery to lose its charge is to have the battery itself reduce the amount of energy in it.

	Thus you send a "message" to the object and the object will do the action desired, without your having to know how it's done. Done correctly, this approach simplifies tasks enormously.

	The second core concept in object orientation is inheritance. This idea is really quite simple to understand. Instead of defining objects individually, you define them in classes. Let's assume, for example, that we've created an object called thing. A thing has a name, a weight, an odor, a sound, and a description. So a thing has 5 properties which describe it.

	Now let's assume we want to define a new class called weapon. A weapon is just a thing with two more properties, damage, and a flag to label it as a weapon. In the traditional language you'd have to design a completely new object. In ADVSYS however, you just say that a weapon is a thing with damage and a weapon flag. It's another case of making things simpler. In other words, a weapon is still a thing, only with additional abilities.

	The last core concept we need to be concerned with is that of properties. A property is just that, some aspect of an object, for example, its weight or color or odor. Every object or class of object has properties, the set of properties being appropriate to that object. We've already given the example of a weapon versus a thing.

Chapter �seq chapter�1��General Syntax

	In this chapter we're going to cover the general syntax used by ADVSYS. Like LISP, it can be said of ADVSYS that "it defines itself". What this means is that you have a handful of commands that combine to make bigger commands that combine to make bigger commands that combine to make bigger commands that...but you get the idea.

	This has some serious ramifications that will kill you unless you're very careful. First, ADVSYS like LISP is prone to "write-only" code. That is, a program is easy to write but impossible to change. You'll see why this is so in just a bit. Second, ADVSYS is devilishly hard to debug, especially after being away from the code for a while. Third, a single misplaced parenthesis can create hundreds of cascaded errors throughout the rest of the program.

	There are two rules to follow, especially for programmers used to traditional languages. First, comment every line, especially the parentheses! Second, keep your program segments very short, on the order of half a page or less. ADVSYS by its very nature is convoluted enough, you do not want to make things worse, believe me!

	In the same vein, heavily comment each object explaining the methods for communication that object requires. You'll spend a lot of time doing this, but I guarantee you if you don't you'll spend five times as long trying to figure out what you've written. ADVSYS (like LISP) is almost assembler-like in its obtuseness (although far easier to write in). Remember, writing the program is easy. Reading the program is another can of worms entirely.

Comments

	In ADVSYS comments follow a semi-colon. For example:

	(setq A (+ A 1))	; Add 1 to A

	Comments can appear after code on the same line, or on a line by themselves. Blank lines are ignored by ADVSYS so it's easy to give yourself lots of white space, a practice that we heartily recommend. Remember, use lot's and lot's of comments, otherwise you'll be one sorry puppy come debug time!

Syntax - The Universal Parenthesis

	If ADVSYS has a weakness, it stems from it's LISP syntax heritage. You see, everything is surrounded by parenthesis. Everything. And on top of that you have to use prefix notation for everything, which can drive infix syntax people absolutely wall-eyed.

	Let's take these things one at a time. For example, here's an IF test in BASIC.

	IF A#0 THEN PRINT "True" ELSE PRINT "False"

	And the same test in ADVSYS:

	(if (not (= A 0))

	 (print "True")

	 (print "False")

)

	which could also be written:

	(if (not (= A 0)) (print "True") (print "False"))

	Astute readers will notice the only difference between the two ADVSYS examples comes from the use of white space. The first example is bad coding practice but the second is absolutely unforgivable. Here's how you should write it in your programs:

	(if (not (= A 0))		; A not equal 0?

	 (print "True")		; Then print true

	 (print "False")		; Else print false

)					; EIF

	In addition you should have the IF test preceded and followed by blank lines to set it apart in the code. This brings up another interesting point about ADVSYS, it's almost infinitely nested. That is, expressions are nested within expressions within expressions, sometimes ten or twelve levels deep. Our simple IF test is four levels deep. Eight or nine levels of nesting is common. Now do you see why comments are so vital?

The Four ADVSYS Commandments

	In many programming languages, especially those used for commercial development, it's often common practice to have elaborate rules about the use of white space in programs, that is, how a program should be indented. In ADVSYS this isn't just good programming practice, it's unavoidable unless you'd rather spend your sleeping hours pouring over impossibly obscure code.

	The first commandment is Thou Shalt Indent. In other words, every time you have to nest a new expression, put it on a new line, indented two spaces. Look at our IF test above. Even the comments are properly indented. Which brings up commandment two:

	Thou Shalt Undent. In other words, put ending parenthesis on their own line and undent them to line up with the opening parenthesis. In our IF test that's the line commented EIF (End of IF). Doing it this way makes your program at least readable. And you won't have to count the parentheses to make sure you didn't miss one.

	Commandment three, Thou Shalt Comment Thy Code, Verily, Unto Every Line. Remember, it's especially important to comment even lines with just parenthesis on them. Bitter experience has shown us that if you don't, you'll live to regret it. Heavy commenting in front of code sections is also essential.

	Commandment four, Thou Shalt Keep It Simple Stupid. ADVSYS is not a good language to write long involved code in. Basic or C programmers used to writing stream code will have a nasty shock if they try it in ADVSYS. It doesn't work, folks. Trust me, I know! Keep the code segments short, no longer than half a page, half a screen is even better.

Chapter �seq chapter�2��The ADVSYS Program Shell

	If you made it this far, congratulations. Many programmers are put off by the nasty ADVSYS syntax and need for extensive comments. Which is a pity, because once you've got a good solid skeleton, writing ADVSYS adventures is really a breeze. That's why we invented TADS. Any recommendations about coding or usage you read in this tutorial will be TADS usage, even if we're talking about ADVSYS commands.

	TADS is really a programming discipline applied to ADVSYS. TADS can help you tame that "write-only" monster lurking in every ADVSYS program. The Four ADVSYS Commandments are really TADS commandments, designed to circumvent the really nasty LISP syntax that ADVSYS has inherited.

	Anyway, onto the program shell. In ADVSYS you have one source program with the extension .ADV. This stands for ADVenture description.

	In TADS you also have a source program with a .ADV extension, however in TADS this isn't the entire program, nor even very much of it. For example, here's the Quest program .ADV file (stripped of 99% of its comments to shorten it.).

; Quest Adventure Program Shell

(adventure quest 1)	; Name & Version of game

@quest.prp			; Properties File

@quest.def			; Definitions File

@quest.scr			; Script File

@quest.hld			; Handlers File

@quest.act			; Actors File

@quest.obj			; Objects File

@quest.dor			; Door Objects File

@quest.l0			; Level 0 Room Descriptions

@quest.l1			; Level 1 Room Descriptions

; End Of Main Module

	As you can see, the TADS version of the .ADV file consists almost entirely of calls to other files. (The lines beginning with @). These contain the actual code. The sole exception is the first line, surrounded by parentheses. This is called the adventure definition statement. It's only purpose is to set up the adventure's name and version number.

	The @ statement is simplicity itself. The file name following the @ will be included when the program is compiled. You can use the @ command only in the .ADV file, it won't work anywhere else. The @ command lets you separate your program into useful chunks, some of which can be shared between different games. For example, the Properties, Definitions, and Script files should be usable for any fantasy program, with just a little rewriting, while the other files are unique to Quest.

	The last line, beginning with a semi-colon, is a comment.

Chapter �seq chapter�3��ADVSYS Language

	The ADVSYS language consists of a mere handful of atomic programming commands. These, however, as has been said, can combine into a horrendous mess unless carefully used. Like the game of Go, you can learn ADVSYS in minutes, but it will take you years to master. Fortunately, TADS has done most of the work for you.

Vocabulary Statements

	ADVSYS is a specialist language rather than a general purpose one. Therefore much of what it does is geared toward its specialized nature—in this case text adventures. So it has a group of commands unique to it, the vocabulary commands. These all follow the same format:

(<part of speech> <one or more words>)

	Where <part of speech> is one of several keywords, and <one or more words> are the words in question. For example, let's assume that we want to define the words the, that, a, and an to be articles. ADVSYS basically ignores articles. The command would be:

	(article the that a an)

	As you can see, the keyword is article, while the words we want to define as articles follow the keyword, separated by spaces.

	Valid keywords for vocabulary definition are: Adjective, Preposition, Conjunction, Article, Noun, and Verb. Verb is only used within the Action command, however. We'll explain the Action command in a moment.

	There's also a keyword called Synonym that makes all words in the list equivalent. For example, to make the words I, Inven, and Inventory mean the same thing the command is:

	(synonym i inven inventory)

	By TADS usage, synonyms, articles, prepositions, and conjunctions should be defined in the Properties file. Verbs are defined as part of the Script file, and nouns and adjectives are defined as part of the Object file. Therefore, the majority of a program's vocabulary will be either defined for you, or defined by you in a natural way.

Constant Definition Statements

	ADVSYS is more like C than Basic. Most Basics do not have definition statements, so Basic programmers won't be familiar with them. A definition statement does one of two things, it either defines a constant or it defines a function. There are two kinds of constants in ADVSYS, the numeric, and the text. Below are examples of both.

	(define errmess "This is an error.")

	(define a 5)

	The constants errmess and a are like variables, except their values never change. Constants are helpful at the beginning of the Properties file to set things like the maximum score, or the turn number of a given event. They are basically a way to name a number or a string to make programs clearer.

Function Definition Statements

	The define statement can also be used to define a function. The general syntax is:

(define (<function name> <arg1> <arg2> &aux <local1>)

 <body of function>

)

	Let's explain. First, a function definition always starts off with (define. This lets ADVSYS know you want to define something. If it were a constant you'd use the constant name then the value. But in a function you include the name of the function and any arguments and local variables inside parenthesis. This is known as a term in LISP. This fits on the first line. Arguments should be familiar to anyone who's ever written a function. Local variables are variables that do not exist outside the function. Arguments are separated from local variables by the literal &aux.

	The second and remaining lines are the body of the function, all the needed statements to get the answer you want. And the very last line is the ending parenthesis.

	For example, here's a function from Quest to connect an object to another object (put one inside the other) The comments have been removed to allow the lines to fit on the page.

(define (connect p c)

 (setp c parent p)

 (setp c sibling (getp p child))

 (setp p child c)

)

	Don't worry about what the function is doing, here's what we want you to see. First, note the define begins and ends with parentheses (the first and last characters, in fact). As we've said repeatedly, every ADVSYS statement is contained within parentheses, which mark the beginning and ending of the statement.

	What we haven't made clear before now is that each statement is actually an expression, that is, something to be evaluated. ADVSYS (and its LISP parent) take the concept of expression evaluation to a ridiculous extreme. Thus the ubiquitous parentheses.

	At any rate, after (define comes the function name and any arguments. In our example, (connect p c). Connect is the name of the function, p and c are the arguments. The next three lines constitute the body of the function, what we want it to do. And the last line is the closing parenthesis.

	Functions can also have local variables. For example, here's the function that connects all items to their initial locations. Again, comments have been removed to allow the function to fit on the page.

(define (connect-all &aux obj maxp1 par)

 (setq obj 1)

 (setq maxp1 (+ $ocount 1))

 (while (< obj maxp1)

 (if (setq par (getp obj initial-location))

 (connect par obj)

)

 (setq obj (+ obj 1))

)

)

	The objects obj, maxp1, and par are local variables. The &aux on the first line merely separates the argument list (there are no arguments in connect-all) from the local variable list.

Variable Declaration Statement

	Unlike Basic, all variables have to be declared before use in ADVSYS. This is very much like C or Pascal. Fortunately, ADVSYS doesn't require a large number of variables. All variables declared this way are integers.

	(variable i j count)

	This statement declares three integer variables, i, j, and count. In TADS usage there are only a handful of variables, and these are declared for you in the Properties file.

Property Definition Statement

	A property is something an object has, for example, a score for a treasure, a flower's scent, the sound of a radio, the weight of a rock, etc. To be assigned to an object, however, a property has to be declared as such. Like so:

	(property weight)

	Weight is now a property that can be assigned to an object. The Property statement allows ADVSYS to distinguish the word weight as a property rather than a vocabulary word or some other term. Most properties are defined in the Properties file for you already.

Handler Statements

	As we've said before, ADVSYS is a specialist language, created solely for writing adventure games. To this end it uses handlers, which are unique to ADVSYS. No other programming language has anything like them, except perhaps RPG II, which isn't a language many programmers are familiar with.

	ADVSYS comes in two parts, the compiler and the interpreter. The compiler is simple, it translates your source code into a special file with a .DAT extension so you can distribute it.

	The second part is the interpreter, which actually lets you play the game. The interpreter has a fixed logic cycle which is rigid and unchanging. First it initializes the game, then enters the cycle. The cycle is: Situation Update, Command Entry (parsing), Before Action, Action, and After Action. These are called init, update, parse, before, action, and after.

	These are the handlers. They work like this. The Init handler is called by the interpreter. This does all the housekeeping for the program, setting up object locations, arming traps, and the like. In other words, Init does all the work necessary to prepare the game for play.

	Then the logic cycle begins. And it doesn't end until the game is over.

	The Update handler tells ADVSYS what to do at the beginning of each turn. In the case of Quest this means to tell a player the room's long description if he's just arrived, then to send a message to all monsters to attack him if he's in their room. It also reduces a player's hit points by the amount of poison in his system.

	After the Update completes ADVSYS asks for a command in the Parse handler. The Parse handler is part of ADVSYS, you don't have to write it yourself. The parser translates what the user typed into a command sequence the program can understand. If there was some sort of error (the user typed something ADVSYS didn't understand) the Error handler is executed, and the loop returns to the Update handler. The Error handler is not implemented in the TADS system, but is easy enough to implement if there's a reason to.

	After the command has been parsed successfully, the Before handler is called to handle anything that needs to be done before the command is executed. In the case of Quest, the Before handler sets the variable %actor to the adventurer. It then looks to see if you've told another actor to do something, and resets %actor to that actor. This has the effect of making that actor do the action. The Before handler is generic to 99.9% of all text adventure games. You may alter it, of course.

	The Action handler is not a single piece of code. Rather, you have one Action handler per verb. For example, you might have one action handler for listening, and another for taking an object. Most of the action handlers have already been written for you in the TADS system, to handle mundane tasks like walking around or taking an object. Actions are stored in the Script file in TADS usage.

	Once the action is completed the After handler is called. The After handler then does any housekeeping required after a successful turn. In the case of Quest this includes draining the flashlight batteries and incrementing the turn counter.

	The difference between the Update and After handlers is that Update is executed whether or not a command was understood. This is why monster attacks and poisoning happen in it. The Update handler thus is good for events which happen very quickly, like combat or life and death choices. As a rule of thumb any action which consumes a minute or less should be placed in the Update handler.

	The After handler, on the other hand, is good for actions assumed to last more than a minute. This includes such things as travel, exploration, or trying to figure out a puzzle. This is why the turn counter and flashlight life are put here.

	Once the After handler completes control returns to the Update handler and the cycle repeats.

�Handler Statement Syntax

	Handlers all have the same syntax, shared by many other ADVSYS commands. Thus:

(<handler name>		; Handler Keyword

 <body of Handler>	; One or more lines of code

)					; Ending Parenthesis

	For example:

(before					; Before handler code

 (setq %actor adventurer); set %actor to player

 (if $actor				; Commanded another actor?

 (progn							 ; yes, BEGIN

 (setq %actor (in-location $actor)) ; set actor #

 (if (not (= (class %actor) actor)) ; Is object actor?

 (complain "You can't talk to a " $actor "!\n"); No

)						; EIF object actor

)						; END commanded actor

)							; EIF commanded actor

)							; EHANDLER

	This is the Quest Before handler. Notice the deep nesting. This is 5 levels deep, very common in ADVSYS. As we mentioned earlier, 8 or 9 levels is also common. Here's the same handler, coded without comments or white space. You can see why we don't recommend it.

(before (setq %actor adventurer)(if $actor (progn (setq %actor (in-location $actor))

(if (not (= (class %actor) actor)) (complain "You can't talk to a "

$actor "!\n")))))	

	The handler keywords are init, update, before, action, and after. The Action Keyword has a special syntax:

	(action <action name>			; Define action

	 (verb <verb list>)			; Define verbs

	 (direct-object)				; Direct object req.

	 (preposition <preposition list>); Preposition req.

	 (indirect-object)			; Indirect obj. req.

	 (code						; Begin action code

	 <body of action>			; The action's body

)							; ECODE

)							; EACTION

	The Direct-Object, Preposition, and Indirect-Object terms are present only if that part of speech is needed. For example, the command Look doesn't need a direct object, but Take The Sword does. And the command Kill The Troll With The Sword needs everything. Note you can define a two-word verb like Look Into like this:

	(verb (look into))

Default Action Statement

	Before we leave actions, there's a statement you should know about, the Default Action statement. This statement controls what happens if you don't specify parts of speech in an action. In TADS usage the default statement (the first statement in the Script file) looks like this:

(default

 (actor optional)

 (direct-object forbidden)� (indirect-object forbidden)

)

	This means actions don't have to have an actor by default, and they can't have a direct or indirect object unless explicitly stated for the action. It's unlikely you'll have to modify the default statement.

The Command Parser

	The command parser that comes with ADVSYS is wonderfully intelligent. It can handle just about any english command you throw at it. Thus it can understand:

	Look

	Look Into The Large Chest

	Take Ring

	Kill The Troll With The Rusty Knife

	Give The Food To The Wolf

	Give The Wolf My Food

	I think you'll agree all of the above commands are fairly natural English, that any player could reasonably enter. In addition, you can precede a command with an actor's name, plus a comma, then a command. For example:

	Robot, Pull The Green Lever

	This assumes, of course, that the actor can understand English and is in a cooperative mood!

	The action the parser chooses is based on the verb involved. Thus you have one action handler for each verb. In the case of verbs that are similiar but have different meanings (like "Look" and "Look Into") make sure you define the action that has the longer verb first, in our example, "Look Into". Otherwise the parser will get confused. As stated earlier, TADS defines the majority of action handlers for you.

Object Definitions

	An object in ADVSYS is most likely to be just that, an object. A sword, a ring, a chest, these are all objects. However, it's also important to remember that actors, like the player's character and any monsters are also objects. As are the rooms the player wanders through.

	In short, every thing in your game that the player interacts with is an object. We'll cover specific object classes in the next few chapters. For right now, we're just going to cover how to define an object. For example, a magic ring:

�(object

 (noun ring)

 (adjective silver)

 (property

 (value 25)

 (magic T)

)

)

	The properties value, and magic have been defined with the (property) statement earlier in the program. As you can see, we've defined an object with a value of 25 points and a magical property. (The T means true, or not zero. Nil would mean 0 or false).

Class Definitions

	In addition to objects, you can also define object classes. An object class is a way to define several objects that have things in common. For example, we might decide that Location would make a good class, so we could easily define rooms. For an example of this see the Quest Definition file.

Mathematical Expressions

	ADVSYS uses a very strange form of notation called prefix notation. So instead of saying A+B like most other languages, you say (+ A B). This notation will drive you crazy before you get used to it, so be warned!

	An expression in ADVSYS consists of an operator and one or more operands, the whole mess inside parentheses. For example:

	(+ A B)	; Adds A and B

	(- A B)	; Subtracts A and B

	(* A B)	; Multiplies A and B

	(/ A B)	; Divides A and B

	(% A B)	; Returns the remainder of A divided by B

	(rand A)	; Returns a random number between 0 and A-1.

	And it isn't just mathematical operations either. If Tests are also affected by the notation.

	(if (= A B)			; A=B?

	 (setq A (+ A 1))	; Add 1 to A

)					; EIF

	These are all valid tests:

	(= A B)				; True if A=B

	(< A B)				; True if A<B

	(> A B)				; True if A>B

	(not A)				; True if A is false (0 or nil)

	(not (= A B))		; True if A is not equal to B

	(and (= A B) (= C D))	; True if A=B and C=D

	(or (= A B) (= C D))	; True if A=B or C=D

	As you can imagine, simple combinations of test conditions get sticky fast, so keep your if conditions simple.

	Bitwise operations are also possible:

	(& A B)	; Bitwise AND of A and B

	(| A B)	; Bitwise OR of A and B

	(~ A)	; Bitwise NOT of A

	We do not use the bitwise operators in TADS.

Variable Assignment

	In Basic if you wanted to add 1 to A and put the result in B the statement is:

	B=A+1

	In ADVSYS you use the setq (set quantity) statement:

	(setq B (+ A 1))

	The setq statement does exactly the same thing as the Basic statement above it. Again, it's very easy to get complicated expressions quickly, so be careful.

Property Assignment

	In ADVSYS properties are not the same thing as variables, although they contain pretty much the same thing. To read (get) or write (set) a property you must first know the object who's property you're talking about. In our magic ring example, for instance, if we wanted to set the variable V to the ring's value we'd say:

	(setq V (getp ring value))

	What this is really saying is get the property value of the object called ring and assign it to the variable V. If you want to set a property use the setp command.

	(setp ring value 30)

	Setp is used to modify an object's property after the property was initially set. For example, a room might start out with exits in all directions. However, due to stupidity on the player's part, a portcullis drops down and blocks one exit. The setp command would be used to modify the appropriate exit for the room. The description might also be modified, depending on how it was handled.

Built-In Functions

	ADVSYS has a number of built in functions to return various values. Since the parser takes almost all input, the sole other means of input (the (yes-or-no) function) will be covered here.

(Class Obj)

	Returns the class of a given object. For example, if we asked for (class adventurer) it would return actor (assuming TADS conventions). If the object was defined with the (object) statement, nil (0 or false) is returned. This function is very useful when determining if the player is talking to an actor or not.

�(Match obj noun-phrase)

	Match is a function that determines if the object has all the nouns and adjectives in the noun phrase. This function is part of the parser system, it's unlikely you'll ever use it directly.

(Yes-or-no)

	This function waits for the player to type something. It returns T (non 0) if the first letter the player typed was a Y or y, otherwise it returns a nil (0 or false).

(Save)

	This function saves the game, after asking for a file name. Very convenient!

(Restore)

	This function restores a typed file name as a game. Very convenient!

(<user defined function> <args>)

	To invoke a function you defined just put its name in parentheses along with any arguments. For example, to put the ring inside the chest with the connect function, use the expression (connect ring chest).

(send <object> <method> <args>)

	Send a message to an object to tell it to do something, with optional arguments. For example, to drain a charge from the flashlight: (send flashlight drain). There were no arguments for this. A method is a function defined within an object, available only to that object. If a class, then the method is also available to any objects defined with that class.

(send-super <method> <args>)

	Send the object's parent class a message to execute a given method with optional arguments.

Output Functions

	ADVSYS handles output gracefully, including massive amounts of running text. There are several functions.

(terpri)

	Outputs a carraige return/line feed.

(print expr)

	Print text contained in expr, where expr is either a literal in quotes like "this is a literal" or a text property of an object, like (getp sword description).

(print-number expr)

	Print a number contained in expr, where expr is either a variable or a numeric property.

(print-noun expr)

	Print a noun phrase where expr is almost always $DOBJECT. $DOBJECT is the name of the direct object the player typed in. Note that $DOBJECT is always a number, not text!

Control Constructs

	ADVSYS has several control constructs. They control how program flow is accomplished. Because ADVSYS is object oriented, most of the program code is hidden away in the objects. It's further complicated by the action of the handlers. But here goes.

(progn)

	This construct is called a block construct. It lets you put multiple statements together somewhere that a single statement is expected, for example, as part of an if test. See the Before handler above for an example.

(if <test> <then expr> <else expr>)

	An if test. <test> is an expression which evaluates to either true or false, non-0 or 0, T or nil. The first expression is executed if the test is true, the second condition is executed if the condition is false. The second condition is optional.

(while <test> <expr>)

	A while loop. Execute <expr> while <test> is true.

(return <expr>)

	Just like a C or Basic return statement, with an optional argument. Only used to end a function, nothing else.

(finish)

	Exit from whatever you are doing and execute the After handler. This is a good way to force execution of the After handler from anywhere in one of the other handlers.

(chain)

	Exit from whatever you are doing and continue with the next handler in the normal logic cycle.

(abort)

	Exit from whatever you are doing and continue with the Update handler. This is a good way to abort a turn without counting it.

(restart)

	Exit from whatever you are doing and return to the Init handler. This restarts the game from scratch, reseting everything.

(exit)

	This quits the game and returns to DOS.

Built-In Variables

	There are several variables set by the parser, or ADVSYS itself.

$OCOUNT

	The number of objects defined in the system.

$ACTOR

	The noun phrase number (usable by print-noun) of the actor typed by the player. Nil if no actor was typed.

$ACTION

	Action noun phrase number.

$DOBJECT

	Direct object noun phrase number

$NDOJBECTS

	Number of direct objects entered by player.

$IOBJECT

	Indirect Object Noun phrase number.

Current Compiler Limits

	The ADVSYS compiler used by TADS is version 1.2 and has the following limits. The compiler indicates the program's current usage.

Words�
500�
�
Objects�
500�
�
Properties per object�
20�
�
Actions or functions�
200�
�
Code length�
16384�
�
Data length�
16384�
�
Text Length�
262144�
�
Quest Narrative

	Quest is a traditional fantasy text adventure modeled after such classics as Willy Crowther's Adventure or Infocom's Zork series. The premise of the game is simple enough. You (the player) are a thief. You stole a map from a wizard but were caught. Totally miffed by your theft the wizard decided to punish you by giving you exactly what you wanted, a chance to steal riches unhead-of!

	So he threw a spell that sent you to a hidden valley sunk deep into a mountainous area. You're free to explore and steal to your hearts content. There's only one problem...you can't escape the valley! And it's filled with all manner of nasty monsters too...

	Quest is more than a just a game. The source code has been supplied, and is heavily commented, showing you exactly how Quest was made. You are also shown in great detail how everything works. With this behind you, it should be no great task to use the skeleton to create your own fantasy adventures.

	Note that other adventure genres are also possible. With a bit of re-writing you can create science-fiction adventures, western adventures, or even (ahem) erotic X-rated adventures. Although the last will require a great deal of rewriting, I'm afraid...

	What we're going to do is follow the Quest program through it's logical flow, from beginning to end. Note that the physical structure is a bit different, to accommodate limitations in the compiler. So with that in mind, let's begin.

Chapter �seq chapter�4��Quest - The Handlers

	Physically, Quest begins by setting properties, vocabulary, function definitions, and so forth. Logically, however, the program begins with the handlers, those routines that actually control the game. The handlers together correspond roughly to the C function main(). In Basic the handlers correspond very roughly to the "main" program, as opposed to the subroutines and functions. The handlers discussed in this chapter are found in the Handler's file, QUEST.HLD.

	Keep in mind that ADVSYS draws its design philosophy from LISP, a very oddball language. Where Basic and C are procedure and command oriented, LISP and ADVSYS are object and message oriented. This difference is key to understanding ADVSYS's esoteric syntax. But enough theory, on to the program!

INIT - In The Beginning...

	The first logical entity in an ADVSYS program is the Init handler. Every Init handler will be somewhat different, but have certain items in common. Compare the Init handler in Quest with the one in the program skeleton.

	The Init handler sets up the game to run. In effect, it sets up the "board" and "pieces" for the game. Init is only executed when the program first begins or a (restart) command is issued. In Quest the Init hanlder first reseeds the random number generator. This allows each game to be unique and unpredictable. Next the (connect-all) function is called. (connect-all) simply takes all objects and connects them to their parent object. In other words, puts all objects where they belong, either in a room or inside another object.

	Next, the variable curloc is set to nil. Nil in ADVSYS is 0. 0, Nil, and False all mean the same thing. curloc is the adventurer's current location. After that we print the game's name and version, the game's author and date, a couple of blank lines, and the welcome message. Note the \n in the (print) statements. C programmers will be familiar with the \n or newline character. It forces a carraige return/linefeed combination whereever it occurs inside a text string.

	And that's it. As you can see, the Init handler is seldom very large.

UPDATE - And Now This Late Breaking Story...

	The Update handler occurs before the player types in his first command, and after the results of each command are known. The update handler, along with the parser, is the routine executed most often by the program. Update happens when a successful turn is completed, if a command was not understood by the parser, or if an (abort) command is issued by some other part of the program.

	Examine the implications for a moment. Update is the logical place to put time-critical situations, like combat. If a player flubs a command, it's just too bad, the monster gets a free shot. If the player's been poisoned, then every second counts.

	On the other hand, you wouldn't want to put the turn counter here, because a turn represents roughly 10 minutes, and a mistaken command shouldn't take that long.

	In Quest the first thing the Update handler checks for is to see if the player has entered a new room. It does this by checking the adventurer's parent against the last known current location of the player. Since the adventurer is an object, and rooms are objects, just like everything else, the adventurer's "parent" is the object the adventurer is in. In other words, the room.

	This is an important concept, the fact that rooms are objects, just like the monsters and treasures are objects. It allows all sorts of design freedom. Objects that become rooms (like the Hot Air Balloon in Zork) are just one example. Currently, Quest or TADS has no such vehicles, but treating rooms as objects allows them to be easily created.

	If the player is in a different room the curloc variable is updated and a message is sent to the room the player is in, telling it to describe itself. This is another fundamental difference in ADVSYS. The code to make the room describe itself is embedded in the class definition Location. In other words, the room knows how to describe itself. See the chapter on objects for a detailed analysis of object classes and objects.

	We next send messages to the wolf to travel and attack the adventurer. The wolf knows how to attack, and will do so only if it is in the same room as the player. We also send messages to the Skeleton and Spider to attack. Like the wolf, these monsters will ignore the message unless the player is in the same room with them.

	Again, in ADVSYS objects are intelligent. They contain not only properties describing them, but also functions that let them perform actions based on messages received. These built-in functions are called methods.

	Finally, the Update handler checks to see if the adventurer has been poisoned. If so, it informs the player he's dying. Hit points are deducted by sending the adventurer a message to deduct the poison as wounds. This will also automatically detect his death.

Parser - Now What Boss?

	The next step in the cycle is to get a command from the player. ADVSYS handles the input and breakdown of the command into its parts of speech automatically. The parser is invisible to the programmer and needn't be dealt with.

	If the parser detects an error it calls the Error handler, which after executing begins the cycle again at the Update handler.

	The parser sets $dobject, $iobject, $action, $actor, and $ndobjects automatically. These are all numeric variables and except for $ndobject point to a noun phrase associated with that part of speech. For example, $dobject is the noun phrase of the first direct object in the command the user typed in. Noun phrases can be printed as text by the (print-noun) command. If printed with the (print-number) command they will be meaningless (to you) numbers.

BEFORE - Once More Into The Breech Dear Friends...

	The Before handler takes care of any activity that has to be done before the action handler for the player's command is executed. It's a good way to set up the actor to execute the command, as we do in Quest.

	The first thing we do is set the %actor variable to the adventurer. This insures that if the player didn't precede his command with the name of another actor the command always comes from the player himself. This is used in Quest mainly to handle the hello command, but it can also be used to command another actor to do something, primarily the give command.

	If the player did type another actor the variable $actor will be true (non-0). If so, we execute the (in-location) function with $actor as an argument, and then set %actor to the result. Among other things, in-location will complain and return to the Update handler if the object in question isn't in the same room.

	The ability of any function to return to the Update handler has two implications. First, when used carefully it allows wonderful flexibility. Unfortunately it also confuses the hell out of you if you forget a function can do that!

	At any rate, once we've set %actor to whatever the player addressed, we check to see if the object addressed really is an actor. We do this with the (class) function. All actor objects are defined as the class Actor. If the object addressed isn't an actor (a tree, for example), then we complain.

	(complain) is another function that forces a return to the Update handler. (complain) is a very common function, convenient and useful. You'll find yourself using it a lot.

ACTION - The Verb Is The Act

	We'll cover actions in the next chapter. There isn't just one action handler, there's at least one for every verb, sometimes more.

AFTER - Truth Or Consequences

	The After handler executes whenever an action handler didn't abort with some kind of error. The After handler is intended to reflect actions that take a considerable amount of time to complete. This includes exploration and problem-solving. As a side effect, it also includes successful combat moves.

	In Quest the only thing we do with the After handler is send a message to the flashlight to drain its batteries and increment the adventurer's turn counter. Every turn is considered to be 10 minutes.

Round Robin - The Cycle Continues

	The After handler returns control to the Update hander and the cycle repeats until the player issues a quit command or dies. Now that we've explored the major functions of the program, let's look at the action handlers.

Chapter �seq chapter�5��The Action Handlers

	The action handlers are easily understood. For each possible verb the player can use (look, walk, eat, kill, sniff, etc) there is a corresponding handler--or more than one. The action handlers are in the Script file, QUEST.SCR. Unless otherwise specified, an actor is optional and direct and indirect objects are forbidden. We'll cover each handler alphabetically. Note that all handlers that have direct or indirect objects call in-location to set the variables %dobject and %iobject. %dobject and %iobject are then used as arguments to functions requiring objects.

	When the word complain is used in the paragraphs below it means the computer outputs the text message with the (complain) function, forcing the handler to abort and return to the Update handler.

a-close	Close Direct-Object. This handler lets a player close an object or door by sending the object a message to close.

a-dip-err	Dip or Fill (without a direct object). The computer complains "Dip what?".

a-douse-lamp	Off or Turn Off. This handler lets a player turn off something by sending a message to the object to turn off.

a-drop	Drop or Put Down Direct-Object. This handler lets an actor drop something he's carrying. If he's not carrying it the computer complains. Otherwise we tell send the actor a message to drop the object, and then say "<whatever> dropped."

a-ele	Ele. This handler is Quest specific. It sends the Ele message to the crystal phial.

a-elentari	Elentari. This handler is Quest specific. It sends the Elentari message to the crystal phial.

a-fill-phial	Dip or Fill Direct-Object. This is a Quest specific action. If the player isn't in the same room as the magic-pool bowl the computer complains. If the dipped object does not have a crystal property the object is disconnected from everything and the computer complains it disolves. If the direct object isn't the crystal phial the computer complains nothing happened. Otherwise the object is sent a fill-it message.

a-hello	Hello or Hi. This handler lets the player greet other actors. Those actors that have a hello-msg property are usually not hostile and are merely cameo-actors to give the player a hint. If the actor doesn't have a hello message, the computer complains. If the actor does, then the computer prints it and sends an exchange message to the actor. This is how the druid hands the mandala to the player.

a-inventory	Inventory or Take Inventory or I or Inven. This handler lets the actor display their inventory on the screen. It simply sends a message to the actor to display inventory.

a-light-lamp	Light or On or Turn On. This handler lets a player light up or turn on something by sending a message to the object to turn on.

a-lock	Lock Direct-Object With Indirect-Object. This handler lets the actor lock a door by sending it a lock message.

a-nirna	Nirna. This handler is Quest specific. It sends the nirna message to the mandala.

a-open	Open Direct-Object. This handler lets a player open an object or a door by sending the object in question a message to open.

a-take	Take or Get or Pick Up Direct-Object. This handler allows an actor to pick up things. If the object does not have the takeable property the object is fixed and can't be taken, so the computer will either complain with the object's get-err-msg property or print a "You can't take the <whatever>" text message. If the object has the shy property it will disconnect from all other objects, in effect disappearing. The Dryad is an example of a shy object. If the object is takeable but the actor (the actor taking the object) is already carrying the object, the computer complains. Otherwise we send a message to the actor to take the object. If the actor can't, the actor will (abort), and the message to the object telling it it's been moved is never sent.

a-unlock	Unlock Direct-Object With Indirect-Object. This handler lets the actor unlock the door by sending it an unlock message.

close-err	Close (without a direct object). The computer complains "Close what?".

crogi	Crogi. This is a Quest specific handler. It's a magic word that teleports the player between the skull room and the hermit's cave. If not in either location the computer complains.

define-thingDefine or Is or What Is or What's Direct-Object. This handler finds the direct object and prints the definition of the object in the def-msg property. If there is no def-msg the computer complains.

drop-err	Drop or Put Down (with no direct object). The computer complains "Drop what?"

give	Give Direct-Object To Indirect-Object. This handler lets one actor give something to another actor. If the indirect object isn't an actor, the computer complains. If the actor giving the object isn't carrying it the computer complains. Otherwise the receiving actor is sent a take message for the direct object and the message "<whatever> given." is printed.

give-err	Give (with missing direct or indirect object or preposition). The computer makes the appropriate complaint.

go-down	Down or D or Go Down. See go-up for details.

go-egress	Leave or Exit or Disembark or Out or Get Out. This handler lets an actor move in the egress direction. egress is a special direction for buildings and the like.

go-enter	Enter or Go In. This handler lets an actor move in the entrance direction. entrance is a special direction for buildings and caves and so on.

go-north	N or North or Go North. This handler moves the actor north by sending them a move north message. The other go-<direction> handlers move the same way.

go-up	U or Up or Go Up. Similar to the go-direction handler, but checks to see if the parent room has an error message about going up. If so the computer complains. This function requires the use of both (chain) and (abort) commands.

kill-thing	Kill or Attack Direct-Object With Indirect-Object. This handler lets a player attack a monster. If the direct object isn't a monster, the computer complains. If the indrect object is not a weapon (lacks the kills property) the computer complains. Otherwise we send the adventurer an attack message.

listen	Listen. This handler lets a player listen to his surroundings. This function sends a message to the room to print its sound property. Most rooms have sound properties, even if it's just "I don't hear anything.". Note that the (listen) handler must be defined after the (listen-to) handler since the verb is shorter.

listen-to	Listen To Direct-Object. This handler lets a player listen to any sound the object he's listening to might be making. If the object being listened to doesn't have a sound property the computer complains, otherwise it prints the sound and adds a newline. Note that (listen-to) must be defined before listen, since the verb is longer. If an object makes a loud obvious noise this should be part of the object description as well as part of the sound property.

lock-err	Lock (with a missing direct or indirect object or preposition). The computer complains appropriately.

look	Look. This handler lets the player view his surroundings. First, the curloc variable is set to nil. This fools the computer into thinking a long description is needed. Next a message is sent to the room to describe itself. This is an example of how an object's methods (built-in functions) can make adventure writing easier. Note that the (look) function must be defined after the (look-into) function, because the verb needed to define it is shorter.

look-into	Look Into Direct-Object. This handler lets a player look into something like an open chest or clear glass bottle. If the object has no holding capacity (isn't a container) the computer will complain. If the object has no child the computer will complain it's empty. If the object is closed and opaque, the computer complains. If it makes it this far the computer says "Looking into the <whatever> reveals:" and then calls the (list-contents) function with %dobject and 1 as it's arguments. (list-contents) is a recursive function which will continue to list objects within other objects as long as all objects are either open or transparent. The 1 inidicates this is the master function call and should only be indented 1 tab. Note that (look-into) must be defined before look because the verb look into is longer than look. This allows ADVSYS to distinguish between them.

open-err	Open (without a direct object). The computer complains "Open what?".

put	Put Direct-Object In or Into Indirect-Object. If the indirect object is closed the computer complains. If the indirect object isn't a container the computer complains. If the direct object exceeds the indirect object's remaining capacity the computer complains. Two functions are called to determine this, (content-weight) which calculates the weight of an object's contents, and (total-weight) which calculates the combined weight of an object and its contents. If the actor isn't carrying the direct object the computer complains. Otherwise the direct object is disconnected from it's current location and connected to the indirect-object. In effect, it's put insde the container.

put-err	Put (with a missing direct or indirect object or preposition). The computer complains with the appropriate message.

quit	Quit. This handler first asks if the player really wants to quit, and if so, exits to DOS.

read-thing	Read Direct-Object. This handler lets the player read an object's inscription. If there's no read-msg property the computer complains, otherwise it prints it.

restart	Restart. This handler executes the built-in (restart) function of ADVSYS, which returns control to the Init handler.

restore	Restore. This handler executes the built-in (restore) function of ADVSYS.

save	Save. This handler executes the built-in (save) function of ADVSYS.

scoring	Score or Rank. This handler gives a player his score and rank (level). It calls the function (total-score) which calculates the total score based on the number of treasures in the hoard and the player's acheivement score. Rank is score / 50.

sleep	Sleep or Rest or Camp or Train. This handler lets the player use the birch grove to heal and gain levels based on his score. Sleeping here raises his rank based on his score, restores the player's hit points (5 per rank), and removes poison from his system.

smell	Sniff or Smell. This handler lets a player sniff his surroundings. This function sends a message to the room to print its odor property. Most rooms have odor properties, even if it's just "I don't smell anything.". Note that (smell) must be defined after (sniff-thing) since the verbs are shorter.\

sniff-thing	Sniff Direct-Object. This handler lets a player sniff an object to see if it has a smell. If the object has no odor property the computer complains, otherwise it prints the odor and a newline. Note that (sniff-thing) must be defined before (smell), since the verb is longer. If an object has an overwhelming odor noticable from a distance it should be part of the object's description, not just the odor property.

take-err	Take or Get or Pick Up (with no direct object). This handler catches a Take with no direct object. The computer complains "Take what?".

unlock-err	Unlock (with a missing direct or indirect object or preposition). The computer complains appropriately.

weigh-thing	Weigh Direct-Object. This handler lets the player weigh an object.

Chapter �seq chapter�6��Functions

	The TADS system defines several functions to make working with objects easier. In this chapter we're going to explore those functions and in general give you a working knowledge of how to use them. We won't go into function details, if you want to know those, study the source code in the Definition file, QUEST.DEF. Functions are listed alphabetically.

complain	Arguments: Head of complaint (text), noun-phrase number of object, tail of complaint. This function is very simple. It's purpose is complain about something, in the form "You can't take the <whatever>!". The Head contains the complaint up to the point you want to insert the object's name (or rather, what the player typed in as the object's name). The tail is any text following the object, usually at least a newline. For example, let's say the player tried to kiss the dryad. The complaint might be (complain "You can't kiss the " $dobject "\n!"). As you can see, in this case the <whatever> is an actor, not an object per se. But since the command was "Kiss dryad", dryad becomes the direct object. Note that (complain) exits with the (abort) command, which immediately forces control to return to the Update handler. This is a handy short-cut, but can confuse you if you aren't expecting it.

connect	Arguments: Parent, Child. The (connect) function puts the child object inside the parent, regardless. There is no checking for capacity or anything else. If the parent or the child don't have the proper properties, tough titty. The function will act as though they do and the results can be unpredictable. Usually the child will disappear.

connect-all	No Arguments. This function is called only by the Init handler, it connects all objects to their initial locations in the game. Every object (except rooms) has an initial location property.

content-weight	Arguments: Object. This function returns the weight of an object's contents only, not including the weight of the object itself.

disconnect	Arguments: Object. This function disconnects the object in question from all other objects. In effect, the object disappears. For example, to make the skeleton disappear when killed, the command is (disconnect skeleton).

findobject	Arguments: Location, Noun. This function finds the object matching the noun the player typed in, either direct or indrect object. It looks in Location, which because some objects are containers can either be a room or a container. It returns T or nil, and is used by other functions. It is rarely called itself. It is recursive, and can force return to the Update handler by means of (complain).

in-location	Arguments: Noun. This function looks for the noun-phrase in the player's current location or his inventory. It calls (find-object) and can either end with a complaint (forcing return to the Update handler) or return T or Nil.

in-pocket	Arguments: Noun. See (in-location). Identical function.

light-present	Arguments: Object. This function returns T if light is present in the object. This can occur if the object is a room and naturally llighted, or if a light source is present in the room and not shielded. This function is recursive, and always returns T or nil.

list-contents	Arguments: Object, Property, Level. This command is used to handle the inventory command. It lists the contents of the object, using property. Since (list-contents) is a recursive function Level indicates which level the function is in. It is called with Level 1, then increments level each time it calls itself.

print-contents	Arguments: Object, Property. This function lists the contents of the Object, using the passed Property to describe it. This function is used by (list-contents).

total-score	No arguments. Calculates the player's total score, based on objects in the hoard plus the player's accumulated score. This function is fairly generic, assuming that all fantasy adventures will have some collection point for treasures, like the well house in Adventure or the trophy case in Zork. As a side note scores are also made for killing monsters and finding rooms, the exact values of which vary.

total-weight	Arguments: Object. This function returns the weight of the object and its contents. Contrast with (content-weight).

Chapter �seq chapter�7��Object Classes

	In TADS we've defined several object classes. An Object Class is a type of object. For example, one object class is a location, another is a weapon, a third is an object that's moored in place, a fourth is a door, and so on. Class dfinitions are fairly generic and can be used throughout a number of different fantasy games, in fact, in a number of different genres.

	Objects have three distinguishing characteristics: Properties, Methods, and Messages.

	A property is some attribute of the object, it's weight or description, for example.

	A method is a built-in function that gives the object “intelligence”, you can, for example tell the wolf to travel without needing to know how the wolf does so. A message is just telling the object which method to execute.

	Methods always return T or nil to indicate whether the method was successful or not. The important thing to remember about methods is they perform an action, and for every method an object possesses you can send it a corresponding message.

	Properties and methods can be unique to an object, or, more importantly, they can be inherited by an object defined as a class of object. For example, all doors inherit the locking and opening methods of their class. This will become clearer as you continue. Classes are listed in roughly in order of complexity. Thus classes needed to define more complex classes are defined first. This is a limitation of the compiler.

	Any properties mentioned have been previously defined in the Properties file, QUEST.PRP. You have to define properties to let ADVSYS know what they are. To define a property you would say (for example), (property value) to define value as a property. Once defined as a property, value can be used by any class or object definition, for any purpose. TADS defines enough classes and properties so the programmer shouldn't have to define many of his own.

Basic-Thing

	A basic thing is perhaps the most complex yet simplest of classes. It is used almost exclusively to define other classes, rather than objects. This is because a Basic-Thing is almost useless unless given some other properties and methods.

Properties

parent	The Parent property allows an object to be put inside a container. That is, the Parent property tells TADS which other object contains this object. Since Basic-Thing is used to define all other objects, all objects (in theory) can be contained by other objects.

sibling	In TADS each object can contain many other objects. For example, a room might hold the adventurer, a monster, and the treasure that monster is guarding. To simplify the programming a sibling chain is used. A sibling chain is simply each contained object pointing to the next object also contained by the parent. In other words, if the parent's child is the adventurer, then the adventurer's siblings would be the monster and the treasure. That is, the sibling of the adventurer would be the monster, and the sibling of the monster would be the treasure. The Parent of all three objects would be the room.

Methods

put-self-in	This method lets an object put itself inside another object. This is a fundamental ability, required of all objects except rooms, so we put it in this class to be inherited by all classes.

vanish	This method allows an object to “vanish”, ie. not be connected to another object. This has the effect of making the object not appear anywhere in the game.

how-hear	This method simply says “The <item> makes no sound”. It’s placed here so all objects will inherit the function. This makes programming easier since you don’t have to worry if the method is supported by the object.

how-smell	This method simply says “The <item> has no smell.” As with the how-hear method above, it lets you send a how-smell message to any object and not worry about making sure the object has the method.

describe	The describe method lets an object describe itself. The printed message is contained in the def-msg property.

drop	This method takes an argument, the object to be dropped. Even non-sentient objects can drop their contents given the proper actions, a vending machine for instance.

Location

	A Location object is a room. In TADS a Location object is as fundamental as a Basic-Thing, but far more complex and useful. Locations have any number of properties that are defined in addition to the basic properties defined here, but the methods defined here are inherited by all rooms automatically. Certain rooms may override the default methods if necessary. See the chapter on Locations for details.

Properties

child	The Child property allows an object (in this case a room) to contain other objects. The Child property contains the first object in the sibling chain. See the Sibling property above for more details about sibling chains.

lighted	The Lighted property allows a room to be either lit or not. Cases where the room itself are lighted include all locations on the surface and any room containing a light source, for example inside the bunker, which has holes in the roof to let light in. Either T or nil.

odor	Allows the room to contain a subtle odor that the player will notice only if he deliberately sniffs. A rank or overpowering odor should be included in the room's long description. (See the Locations chapter for details). Contains text.

sound	Allows the room to have a subtle sound, that can only be heard if specifically listening. A loud or obvious noise should be included in the room's long description. Contains text.

visited	Marks whether or not a player has been at this location before. Either T or nil.

Methods

describe	This method allows the room to describe itself. First, it checks to see if light is present. If not, it prints "I can't see a thing, it's too dark." and issues an (abort) command, forcing return to the Update handler. If there is light it checks to see if the room's been visited before. If so, it prints the room's short description and object contents. If not, it prints the room's long description, object contents, sets the Visited property to true, increments the adventurer's score by the room's points value, and then sets the room's value to 0. This insures that a player can only score for visited the same room once.

enter	Argument Object. This method lets the Object enter the room, in other words, to be put inside the room with other objects all ready there.

how-hear	This method simply prints the contents of the Sound property.

how-smell	This method simply prints the contents of the Odor property.

knock?	Argument Object. This method allows you to require some special condition before the player can enter the room. For most rooms this method returns T, meaning there are none. (knock?) is basically a function returning T or nil. T means the player (or actor) can enter the room. Nil means they can not.

leave	Arguments Object, Direction. This method allows an Object to leave the room and move to the room pointed to by the Direction property. For example, one direction property is North. So by sending the command (send-message adventurer north) you could make the player's character move north. Of course, there are any number of error checks performed to make sure the player can move north. First, TADS checks to see if there's a room in that direction. If not, ADVSYS looks for the error message property side-err-msg and prints it if found, otherwise printing "There is no exit in that direction.". If there is an exit, this room sends a (knock?) message to the other room (in our example, the one to the north). If the (knock?) is successful the object in question is moved from this room to the other. If not the other room may print a message indicating why the knock failed. Most rooms automatically return T to the (knock?) message.

Portal

	Basic-Thing and Location classes are defined with the (object) clause, indicating they are fundamental objects, inheriting nothing. The Portal class is different. It is defined a Basic-Thing, not a mere object. In ADVSYS, this means that Portal inherits all the properties and methods of the Basic-Thing. This includes the Parent and Child properties, and the methods (fill-it) and (nirna-zap).

	It's also different in that the Portal class requires no additional properties. It thus has only the Parent and Child properties inherited from it's super-class Basic-Thing. (A super-class is the class which defines a class.).

	Portals are also valid destinations for the Enter and Egress direction properties. That's why the Portal class shares many of the same methods as the Location class. Note that portals usually come in pairs, the (enter) method teleports the object in question from one portal's location to the other.

Properties

	Only those inherited from the Basic-Thing super-class.

Methods

<genetic>	Remember this class inherits all methods of a Basic-Thing.

close	This method lets the player close the portal. If it's already closed we say so and return nil. Otherwise we set the Closed property to T and print the short and closing descriptions.

enter	Argument Object. This method teleports Object from the portal's current room to the room where the other side of the portal (also an object) is located.

knock?	Argument Object. This function checks to see if the door is closed. If so, it tells the player the door is closed and returns nil. Otherwise it returns T.

lock	Argument Key Object. This method lets the player lock the door using the Key Object. First, we see if the door is closed. If not, we say so and return nil. Next we see if it's already locked. If so we say so and return nil. Finally, we check if it's the right key. If not we say so and return nil. If all checks pass, we set the Locked property to T and print the short and locking descriptions.

open	This method lets the player open the portal. Remember, dispite the rather novel way they operate a portal still looks and acts pretty much like a normal door. First we check to see if the door's already open. If so, we say so and return nil. Next we check to see if it's locked, if so we say so and return nil. If we can open the door we set the Closed property to nil and print the portal's short and opening descriptions.

unlock	Argument Key Object. First we check to see if the door's open. If so we make a snide remark and return nil. Next, we see if the door's locked. If not, we say so and return nil. If the player is using the wrong key we say so and return nil. If all checks are passed we set the Locked property to nil and print the short and unlocking descriptions.

Actor

	Like Portal, the Actor class is defined as a sub-class of Basic-Thing, thus automatically inheriting the properties and methods of Basic-Thing. An Actor is a complex object class with many properties and methods. An actor is any person or animal the player can talk to or fight (see the Monster sub-sub-class below).

Properties

<genetic>	Remember this class inherits all properties of a Basic-Thing.

Child	All actors can carry things. Whether they will or not, depends of course on the programming of the particular actor.

Methods

<genetic>	Remember this class inherits all methods of a Basic-Thing.

carrying?	Argument Object. This method checks to see if the actor is carrying the object. Returns T or nil.

close	In case the player tries to close an actor's mouth or some other stupidity, we complain.

drop	Argument Object. This method lets an actor drop an object he's carrying into the room he's in.

exchange	Some actors, like the druid, give the player things when spoken to. This method is defined now for consistancy, even though most actors don't exchange things.

inventory	This method handles the Inventory command for an actor. First the actor is checked for a child object. If none, we say so and return. Otherwise we check to see if the actor is the adventurer or another actor. The only difference is we say either "You are" or "The <whatever> is" . Then we call (list-contents) with the actor and the short description of the objects in the inventory.

move	Argument Direction. This method lets an actor move by sending the room he's in a leave message for the proper direction.

open	In case the player tries to open the wolf's mouth or some other stupidity, we complain.

take	Argument Object. Allows the actor to take an object that doesn't exceed his carrying capacity. If the object has a Special property of T, the object is sent a Take message, to let the object handle it's own taking. Otherwise the object is disconnected and reconnected to the actor.

turn-off	As with (turn-on) this just makes a snide remark and returns to the Update handler with (abort).

turn-on	To make programming simpler we define a (turn-on) method, even though it just makes a snide remark and aborts to the Update handler.

Monster

	The monster class is defined as an Actor. That is, a monster inherits all properties and methods of an Actor, which in turn inherited all properties and methods of a Basic-Thing. So in one fell swoop a very complex object is defined even before you add any Monster Properties or Methods!

	A Monster is an Actor who can fight--including the adventurer himself! All Monster properties and methods pertain to combat or motion. By definition an actor is stationary, fixed to the room they are first encountered in. Many monsters can move. For example, the wolf.

Properties

<genetic>	Remember this class inherits all properties from both Actor and Basic-Thing.

Methods

<genetic>	Remember this class inherits all methods of Actors and Basic-Things.

attack	Arguments: Target, Roll Needed, Low Damage, High Damage. This complex method controls how attacks are made by the monster. In the player's case, much depends on which weapon is used. In the monster's case the attack might be modified by any number of options. Basically, the attack routine generates a random number between 1 and 20. If the roll is less than the Roll Needed, the attack missed and the monster invokes its own (say-missed) method. Otherwise it invokes it's own (say-hit) method and sends a (wounded) message to the target.

attack-adventurer	This method is really only needed by monsters other than the player. If the monster is dead when this message is received, it returns without action. If the monster isn't in the same room as the player the method returns without action. Otherwise an attack message is sent to activate the monster's own attack method.

effective-ac	This method returns the monster's effective AC, or armour class. Armour class is based on the AD&D system, 10 is the worst armor, -10 is the best. The lower the armour class the harder the monster is to hit. This method is declared here for consistancy, it is overriden for each monster.

effective-TH0	This method returns the monster's effective TH0, or the number needed to hit armour class 0. The TH0 ranges from 20 to 1, the lower the easier the monster can hit something.

say-hit	This method prints the description when the monster successfully wounds an opponent. It is defined here, but overridden for each monster.

say-missed	This method prints the description when the monster misses it's target. It's overridden for each monster.

travel	This method lets a monster travel. Most can't, which is why this method does nothing.

wounded	This method handles the monster taking damage and dying. Each monster has their own method. Basically, a monster has a number of hit points. Each time the monster is hurt a number of hit points are lost. When reduced to 0 or less the monster is dead.

Thing

	A Thing is a Basic-Thing, having the Takeable property and having many more methods. Basically a Thing can be anything the player can carry. A Thing inherits all properties and methods of a Basic-Thing.

Property

<genetic>	Remember this class inherits all properties of a Basic-Thing.

takeable	The Takeable property is set to T, meaning the player can pick it up.

Method

drain	This method lets an object be drained, for example, the flashlight/batteries combination.

open	This method complains you can't open the object. Most object's aren't containers.

close	This method complains you can't close the object. Most objects aren't containers.

move	This method handles objects having a unique first movement description. For example, getting the silver ring from the branch. First, we see if the object's already been moved, or if there's no special first movement, we just say "<Whatever> taken" and let it go at that. If the object hasn't been moved before, but does have a special first move then we print the first-move description and set been moved to T. we then chain to the next handler manually with the (chain) command.

turn-on	This method complains you can't turn on the object.

turn-off	This method complains you can't turn off the object.

Stationary-Thing

	The Stationary-Thing class is really just a synonym for Basic-Thing, they are in all respects identical. We use Stationary-Thing for clarity.

Weapon

	A weapon is defined as a Thing, which kills. It has all the properties and methods of a Thing.

Property

kills	The Kills property is set to true for weapons, this makes checking for a weapon easier in the attack routines.

Method

<genetic>	Remember this class inherits all methods of a Thing.

Container

	A Container is a Thing which has additional properties and methods suitable for containers like jars and so on.

Property

<genetic>	Remember this class inherits all properties of a Thing.

child	All containers must have a Child property to hold an object.

closed	The majority of containers are closed with found, so this property is set to T.

key	The object required to unlock this container.

locked	Not all containers can be locked, but it was deemed wise to allow for it.

Transparent If an object is transparent the various routines for looking into an object can see it's contents. If transparent, light can escape to light a room.

Method

close	If the object is already closed we complain. If not, we set the Closed property to T and say so.

ele	Most objects won't be able to ele (dim the magic liquid).

elentari	Most objects won't be able to elentari (make the magic liquid light up).

fill-it	Most object's can't be filled (as with a liquid).

open	How to open this object. If already open we complain. If the object is empty, opening it reveals that, othewise we list the object's contents and set the Closed property to nil.

total-value	How an object calculates its total value. Most can't, the only one in Quest that can is the hoard.

Chapter �seq chapter�8��Quest Actors

	In Quest (and TADS) we have divided the various objects into broad categories and put each category in it's own file to organize things. The actors have their own file, called QUEST.ACT. Actors are anything the player can talk with or fight. The Monster sub-class is also included with actors.

	Like the previous chapter each actor is divided into new properties and methods. Remember that actors and monsters inherit all methods and properties of their class.

Adventurer (Nouns: Me or Self)

	The adventurer is really a monster (an actor who can fight). As such he's inherited all the methods and properties of the monster class. All methods and properties discussed here are in addition to those methods and proprties. Where the method or property is the same as a previously defined one, the new one overrides the previous definition. We won't cover obvious properties, like Short-Description or Initial-Location, who's purpose should be obvious from the source code.

General Notes

	The player starts at the room Start-Cliff. He weighs 150 pounds and can carry 50 pounds. He starts off with no score and 5 hit points. He is AC 10, unless carrying the silver ring, which makes him AC 7.

	His TH0 (To Hit Armour Class 0) is 20 minus the magical bonus of the weapon in use, minus 1 for every rank he's managed to gain.

Property

value	This property holds the player's accumulated score. Each time the player finds a room that has scoring points or he kills a monster he adds them to this property. This property, plus the value of all treasures currently in the hoard, allow him to become more powerful. See the Birch-Grove for details of level advancement.

poisoned	The amount of poison in his system. Every time the Update handler is executed, this value is subtracted from his hit points. When hit points reach 0, he dies. The spider increases this value by 1 each time it hits the adventurer.

Dryad (Noun: Woman or Dryad or Her. Adjectives: small red haired)

	The dryad is an Actor intended to give the player a cryptic clue or two about dangers he will face and what he needs to overcome them.

General Notes

	The dryad can not fight or be attacked, and has the Shy property set to T, which means if she's attacked or the player tries to get her, she disappears. Once the player has spoken to her, and she's said her piece, she disappears. She can be found at the Maple-Stand. She does not travel (other than to disappear).

Druid (Noun: Man or Druid. Adjective: robed)

	The druid is an Actor who gives the crystal mandala to the player. He also explains how to use it.

General Notes

	The druid isn't shy, like the dryad, so an attack or get attempt won't make him disappear. He's found at the Brenin room. He can't fight or be attacked, and will give the player the mandala if spoken to. Once he's given the mandala to the player he disappears.

Hermit (Noun: Man or Hermit or Ecla. Adjective: old)

	The hermit is the player's accountant. He's mainly there to give a logical reason for a player to know how much the treasures are worth. He's also good for a laugh if the player tries to get the abacus. He's found at the room Hermit-Cave, and can carry 10 pounds.

General Notes

	Ecla isn't shy and won't disappear for any reason. He's good for a laugh, since once the player figures out how to get the abacus, he'll have a rough time giving it back. Otherwise, Ecla's basically part of the scenery.

Wolf (Noun: Wolf. Adjectives: Large Grey)

	The wolf is a monster, and quite capable of killing the player until he's gotten some good weapons and a higher score. Good luck till then!

General Notes

	The wolf can travel, using a random number between 1 and 2 to choose either Wolf-Dir-1 or Wolf-Dir-2. It's inital location is the room Deep-Forest. The wolf has 14 hit points, an AC of 7, and a TH0 of 17. It does 1-4 points of damage if it hits. It weighs 150 pounds and is worth 5 points if killed.

	If the player is carrying the Silver-Leaves object the wolf won't attack, but travel on instead.

Skeleton (Noun: Skeleton. Adjective: Undead)

	The skeleton is part of the elaborate trap/puzzle in the skull-room. It doesn't exist until the player tries to get the skull or skeletal arm. When killed it disappears and leaves behind the bone key, short sword, and garnet.

General Notes

	The skeleton has no initial location, not being placed until the player touches the skull or skeletal arm. It is then placed in the skull-room. The skeleton is a fairly dangerous monster for two reasons. First, armed with a short sword doing 1-6 points of damage and having a TH0 of 19 it could seriously hurt even a mid-level player. Second, any weapon other than the stick will only do half damage! The skeleton has 8 hit points, but with any weapon other than the stick, it's like 16! The skeleton weighs 20 pounds and has an AC of 7. When killed, the sword, garnet, and bone key are placed. It's worth 15 points if killed.

Magical Ward (No nouns)

	The magical ward is treated as a monster, although it could also be treated as a knock? for the Roots-Of-Brenin location. The ward is normally invisible, and has no nouns so the player can't attack it.

General Notes

	The ward is unique in that the player can't attack it, but it can attack him. It also won't let him past. It attacks if the player travels east from the E/W passage without the mandala. It has one hit point to keep it from being thought of as dead, and no value for defeating it since it can't be defeated. Damage is 1-20, making it a real player-killer. It can't miss, and can't be attacked.

Giant Spider (Noun: Spider. Adjective: Giant, Gigantic, Huge)

	The giant spider is a hideously dangerous opponent, unless the player is carrying everything he needs to kill it. The spider's venom is permanent unless the player reaches the Birch-Grove in time it will kill him. Each time the spider hits another point is added to the Poisoned property. Also, as long as the spider is alive, it won't let him leave.

General Notes

	The giant spider will be found in the Spider-Lair room. It weighs 500 pounds and is worth 50 points if killed. Each bite, in addition to the poison, does 5-20 points of damage, making melee with it dangerous. As if that weren't bad enough, the spider is AC 3 and has a TH0 of 12, making it hit most of the time. Fortunately it's afraid of the malachite star, and won't attack if the player carries it.

Chapter �seq chapter�9��Quest Objects

	In Quest there is a broad range of things the player can pick up and carry. These things are broadly called objects. A flashlight, a sword, a small crystal phial, all these things are, broadly speaking, objects. In this chapter we're going to discuss various aspects of how objects behave, and the interesting things you can do with them. For detailed explanations see the source code. The objects discussed in this chapter are in the file QUEST.OBJ.

Stick (Noun: branch, stick. Adjective straight)

	The stick is just that, a long heavy branch fallen from a tree. You can hit things with it, but note it's never actually referred to as a club. We reserve this bit of deduction for the player, it's really the first puzzle in the game. Note there aren't any points for figuring it out, having the comfort of a weapon should be reward enough...

	The stick is the only weapon that does full damage to the skeleton. The stick weighs 5 pounds and does 1-6 points of damage. It's initially found in the Deep-Forest room.

Jeweled Dagger (Noun: Dagger. Adjective: Jeweled)

	Here's a subtle puzzle for players. The jeweled dagger is a magical dagger +1. That means it adds one to the chance of hitting an opponent, and 1 to the amount of damage inflicted. The rub is that the dagger is also treasure, and supplies points only as long as it's in the hoard.

	The dagger weighs 1 pound, is worth 10 points, and does 1-3 points of damage (+1 for the magical bonus). It's initially found in the Forest-Cave room.

Short Sword (Noun: Sword, Adjective: Short)

	The short sword is used by the skeleton, and the player won't be able to get his hands on it until the skeleton is killed. The sword makes a great all around weapon, doing 1-6 points of damage. It weighs 5 pounds and gives +1 to hit. This is not a magical bonus, it's just a weapon the adventurer is used to...

Spear (Noun: Spear. Adjectives: Silver-Bladed, magical)

	The spear is interesting in several ways. First, it's a valuable +3 magical spear. It does 1-8 points of damage, making it a great weapon to fight things with. It weighs 10 pounds. The spear uses the First-Move and Normal-Description properties to handle pulling the spear from the bugbear corpse. The spear is initially at the Spear's End room. It's worth 20 points, making the decision to leave it in the hoard even more difficult.

Acorn (Noun: Acorn or Acorns)

	The acorns in the Brenin room are an example of a useless prop, placed solely to provide atmosphere. The acorns don't even have a description of their own, their description is part of Brenin's description.

Missletoe (Noun: Missiletoe)

	Like the Acorn object the missiletoe located in the Brenin room is just to provide atmosphere. It does absolutely nothing except spook the player who tries to harvest it.

Peg (Noun: Peg)

	At the Dungeon-Entrance room is an elaborate trick/puzzle for the player, part of which is a set of keys on a peg. The keys are takeable, but the peg isn't. This object provides the error message if the player tries.

Door-Note (Noun: Sign or Note)

	The note on the door of the Dungeon-Entrance room is notable only because of the fact it can be read. It also makes a snide remark if the player tries to take it.

Griffon (Noun: Griffon)

	This object is located at the Dungeon-Entrance room for only one reason--to allow the player to ask what a griffon is. The griffon is part of what is probably the most elaborate practical joke in text adventure history.

Iron-Ladders 1 & 2 (Noun: Ladder. Adjective: Iron)

	The iron ladders are located in two adjacent rooms, and in fact lead between them (in theory, anyway.). One's located inside the blockhouse, the other in the bunker underneath the blockhouse. They are just a way of making a snide remark if the player tries to take them.

Bugbear-Corpse (Noun: Corpse or Bugbear)

	The bugbear corpse is part of the scene at Spear's End. It provides a rather gruesome touch to the discovery of the magical spear.

Bowl (Noun: Bowl or Pedestal)

	The bowl and pedestal are carved rock and actually part of the floor. It forms the basin for the magical pool the player dips the crystal-phial into to fill it. It's provided to have a way of making a snide remark if the player tries. It's located in the Magic-Pool room.

Mandala (Noun: Mandala or Circle. Adjective: Crystal, Sacred)

	The crystal mandala is a magical treasure given to the player by the druid, if the player talks to him. It has several functions. One is to allow entry past the magical ward guarding the Roots-Of-Brenin room. The second is to fry the spider when used in conjunction with the blazing crystal phial and the magic word "Nirna".

	The mandala is worth 60 points, weighs half a pound, and has the Crystal property. It has the nirna-zap property, which tests several conditions before frying the spider in a wave of blazing glory.

Silver-Ring (Noun: Ring. Adjective: Small, Silver)

	The silver ring is also a magical treasure, a +3 Ring of Protection which improves the player's armour class by 3. It works in conjunction with other protective devices. The ring is worth 10 points and weighs a tenth of a pound. It possesses the First-Move and Normal-Description properties.

Black-Batteries (Noun: Batteries. Adjective: Black)

	The batteries are initially located inside the flashlight. They are good for 200 turns (about 33 hours!) and weigh 2/10's of a pound. They have a method of draining which warns the player about successively weakening power.

Brass-Keys (Noun: Keys or Ring. Adjective: Brass, Enormous)

	The brass keys are just that--keys. They open the blockhouse door and several other locks around the dungeon. They are initially located at the Dungeon-Entrance, hanging on the peg by the door. Thus they are part of the elaborate practical joke at the Dungeon-Entrance room. The keyring is enormous, weighing 10 pounds. This object shows the first-move capability.

Abacus (Noun: Abacus)

	This is a puzzle for the cruel player. He can't take the abacus but the old man will give it to him if he asks. All the player then has to do is figure out how to give the abacus back. It does absolutely nothing useful.

	Note the abacus isn't takeable. It weighs 10 pounds and is worth 10 points if placed in the hoard. It has a snide remark for a definition.

Fishook-Rod (Noun: Rod. Adjectives: Black, Fishook)

	The fishook rod is waved to create the jeweled fishnet across the wharf. However, it resembles the black rod in Adventure, so players may wrongly assume it scares the canary. Thus this object is part of the Adventure-style bird puzzle, but with a twist. It's initially found in the Skull-Room room and weighs 10 pounds. It can't be used as a weapon.

Crogi-Note (Noun: Note. Adjective: Parchment)

	The note ordnarily would be stationary (untakeable) but it's fairly important for the player. The magic word only works between the Skull-Room and Hermit's-Cave rooms. This object shows the first-move property, weighs 1/10 of a pound, and is initially found on the wall of the skull room.

Skeletal-Arm (Noun: Arm. Adjective: Boney)

	The boney arm (along with the skull) is a trap for nosey players. The description of the Skull Room specifically forbids taking the arm or the skull, so naturally...

	Trying to take the arm (or the skull) activates the skeleton. Note this item has a Special property, and a special take method. It sends the take message to the skull, where the real code lies. This is a good example of one item sending another item a message. It also reduces coding quite a bit.

Skull (Noun: Skull. Adjective: Human)

	The skull, like the boney arm, is a trap. They are two pieces of an undead monster, a magically animated skeleton. The skull has a special take routine, and is initially found in the Skull-Room. When the skull is touched it and the boney-arm are disconnected. The skeleton is then connected to the Skull Room and promptly attacks the adventurer!

Garnet (Noun: Garnet or Gem. Adjective: reddish purple)

	The garnet doesn't exist until the player kills the skeleton. The garnet then appears, along with the short sword and bone key. The garnet is worth 15 points, having no other purpose than treasure. It weighs 2/10's of a pound.

Skeleton-Key (Noun: key. Adjectives: Large, Bone)

	The pun was irressistable. The bone key appears when the skeleton is killed. It weighs half a pound. As yet it has no purpose.

Canary (Noun: Bird or Canary. Adjective: Yellow)

	This is a deliberate twist on the famous bird puzzle from Adventure. In Adventure, however, it's the Rod that scares the bird. In Quest it's the guilded cage. Much more logical, don't you agree? Anyway, the bird has a special take routine and weighs 1/10 of a pound. It's initially found in the Grotto room.

Malachite-Star (Noun: Star. Adjective: Malachite)

	The star is a magical treasure. It will keep the spider from attacking. It's initially found in the half-and-half room, weighs 1/2 a pound, and is worth 5 points.

Silver-Leaves (Noun: Branch, Leaves. Adjective: Silver)

	The silver leaves are a treasure worth 25 points. The massive thing weighs 10 pounds. It's useful for keeping the wolf from attacking, since the leaves smell faintly of wolf's-bane. This treasure is initially located in the Light-Room room.

Staff (Noun: Staff. Adjectives: Wood, Oak, Rune-carved)

	The staff isn't a weapon, the carving weakens it too much. It's a treasure worth 5 points, it weighs 5 pounds. It's initally found in the Roots-Of-Brenin room, guarded by the magical ward.

Flashlight (Noun: Flashlight or Lamp. Adjectives: Chrome)

	The flashlight runs on (and contains) batteries. It's initally found in the Clearing room. It weighs 1 pound and can hold 2/10's of a pound of items. It will only run on batteries, though. It has a drain method which sends the first child a drain message. The open method demonstrates the send-super command, sending a message to it's parent class, not object.

Hoard (Noun: Chest. Adjectives: Massive, Iron-Bound, Wooden)

	The hoard is a huge chest in the hermit's cave that holds all the player's treasure. Object points count toward the player's score only so long as the object is in the hoard. The hoard weighs 500 pounds and can hold 3200 pounds. It has a total-value method called on by the Score command.

Guilded-Cage (Noun: Cage. Adjective: Guilded, Small, Wicker)

	The cage is a horrible pun tied in with the bird puzzle varient (or should I say deviant?) in the Grotto. Also, the cage when first found is ready for the garbage can, most players won't even notice it. The initial location is the Low-Dusty-Crawl room. The cage is worth 5 points and weighs 5 pounds. It is transparent and has a 1 1/2 pound capacity.

Crystal-Phial (Noun: Phial. Adjective: Small, Crystal)

	The crystal phial is to be filled at the magic mirror in the Bowl-Room. It then becomes a magical light source that can be used instead of the flashlight. It can also power the mandala to fry the spider. It's initial location is the E/W-Passage-2 room. The phial is transparent, weighs 1/10 pound and is worth 5 points. It has a capacity of 1/10 pound. It also has the Crystal Property. When filled the value jumps to 25 points and it will respond to the Ele and Elentari commands.

Chapter �seq chapter�10��Quest Doors

	In TADS doors are always found in pairs. The door in one location is linked to the door in the other location. Entry through doors can be in one of the standard directions, or the Enter and Egress directions. We prefer the latter. The doors are located in the file QUEST.DOR, because doors are somewhat cumbersome to define.

Blockhouse-Door

	The blockhouse door is a class, not an object. We use it to define attributes common to both doors in the Blockhouse door pair. In other words, both doors are closed and locked, and both are unlocked by the brass keys.

Blockhouse-Door-1

	The first door of the pair is located in the Dungeon-Entrance room. The Other-Side property is set to the other door (Blockhouse-Door-2). Note that this object is defined as a Blockhouse-Door. It's part of the complex prank at the Dungeon Entrance.

Blockhouse-Door-2

	The second part of the blockhouse door pair. Note that whenever a door is locked, unlocked, opened or closed it's counterpart is likewise.

Chapter �seq chapter�11��Quest Rooms

	In Quest rooms are divided into levels, to keep things manageable. In your game you may decide to have your rooms in sections, like the "Beanstalk" section of Adventure or the "Alice-in-Wonderland" section of Zork.

	We're going to lightly cover each room in Quest, noting any interesting points but not going into detail. Programmers interested in constructing maps may examine the source code.

Super Classes

	There are several super-classes used to make room definition easier. Each begins with the class Location, inheriting all needed properties and methods.

Forest

	The Forest super-class defines the location's long description (all forests look alike), short-description, up and down errors, sound, and smell. The class also defines the room as lit.

Valley-Wall

	The Valley-Wall super-class defines the up and down errors, a side error, and the sound. The room is also defined as lighted. This super-class is used to define the next super-classes.

North-Wall

	The north wall is defined as a Valley-Wall and sets the long description and short-descriptions.

Cavern

	The Cavern super-class defines the up, down, and side errors, as well as sound and smell. It also assumes that caves are dark.

Start-Cliff (Location)

	The starting point for the adventurer is the west end of a sunken valley surrounded by unscalable cliffs. When the player begins he isn't carrying anything, and his whole purpose is to get out! Of course, if he can scarf a few knick-knacks, all the better...

Deep Forest (Forest)

	Deep Forest is just that, trackless wilderness. This room is part of a complex of forest rooms that all look pretty much the same. The interesting thing about Forest rooms is that the wolf-wanders through them...

Deep-Forest-2 (Forest)

	Just like Deep-Forest, except that travel puts you in different places.

4-Way-Path (Forest)

	The 4-way in the forest path goes various ways along the path, and other directions into Deep Forest. The wolf can't wander on the path.

North-Path (Forest)

	This path leads to the maple-stand and the dryad from the 4-way. Even though this is defined as Forest the wolf can't travel on the path.

Maple-Stand (Location)

	The maple stand is where the dryad is found. Other than that it's an exercise in narrative description. The wolf can't enter here.

North-Wall-1 (North-Wall)

	The westernmost section of the north valley wall. Going south takes you into the maple stand. The wolf can't enter here.

3-Way-Path (Forest)

	This three-way leads to Brenin, the 4-way intersection, and the Beech-Copse containing the only tree in the forest the player can climb. The wolf can't travel the path.

Brenin (Location)

	Brenin is an absolutely mammoth oak tree. It's here the player will meet the druid and receive the mandala. The wolf is barred from here.

Beech-Copse (Location)

	This location contains the only tree the player can climb in the whole forest. The wolf is bared entrance here.

South-Wall-1 (South-Wall)

	This is the westernmost south wall. To the west and to the north are the beech-copse.

Up-A-Tree (Location)

	This is the first level of the tree climbed by the player.

Further-Up-A-Tree (Location)

	This is the second level of the tree climbed by the player. We actively try and discourage him from climbing further, to prevent him from finding the silver ring in the tree top.

Tree-Top (Location)

	This room's worth 5 points for daring. This is also where the silver ring is located.

3-Way-Path-2 (Forest)

	This three-way intersection leads to the 4-way path, the birch-grove, and the hill.

Birch-Grove (Location)

	The birch-grove is a very important place. If the player camps or sleeps here he will be healed of all wounds, given 5 hit points for each rank he's achieved, and have the spider's venom neutralized. Thus it's very important all treasures be put in the hoard before coming to the birch grove.

Hill (Location)

	The hill is the player's first glimpse of something other than trees. It's intended to give him a sense of openness and relief after the confines of the forest.

Deep-Forest-3 (Forest)

	Yet more forest for the wolf to wander through.

North-Wall-2 (North-Wall)

	This is just the center section of the north wall. Sometimes, in making a dungeon more realistic there are a lot of mundane details. This is one of them.

Clearing (Location)

	The clearing is the central point for the adventurer. There's all manner of tempting directions to explore, so the eager player should be entertained for some time.

Deep-Forest-4 (Forest)

	Yet more deep dark dangerous wolf-infested forest.

Dungeon-Entrance (Location)

	Throughout the tutorial we've been making references to the elaborate hoax to be found at the dungeon entrance. It's about time we explain it. By the time the player has stumbled onto this location he'll probably have met the wolf and perhaps even been killed once or twice. He'll be ever alert to signs of danger, and--more importantly--ready to heed warnings from the computer.

	Which, of course, the hoax takes into account. It works like this. The player enters a sandy depression with a cement pill box at the bottom. The pill box has a massive steel door with a sign. Of course the player's going to read the sign, which warns him about the griffon. What the player doesn't know is that the so-called griffon is merely a collection of sound effects...

	If the player listens he'll hear a faint sound behind the door. If he's smart enough to figure out how to listen to the door he'll hear a sound like claws scraping metal. If he unlocks the door with the keys (hanging conveniently on a peg by the door) the player will hear something massive slam against the other side of the door. (Obviously something large lurks beyond the door. And it wants out...)

	Most players will hastily lock the door and retreat. The stupid (er, brave) ones will open the door anyway to find it's all a bluff.

	Imagine the sweet strains of the player's strangled curses as he discovers the trick...

North-Wall-3 (North-Wall)

	Another section of the north wall.

North-Wall-4 (North-Wall)

	Yet another section of north wall (long wall, eh?).

Forest-With-Cave (Forest)

	This section of forest has a hole in the floor, leading to a small cave. The wolf doesn't wander here.

Forest-Cave (Location)

	Other than the fact there's a jeweled dagger here the forest cave has no significance, other than perhaps to tease the player into thinking it's a dungeon entrance.	

Deep-Forest-5 (Forest)

	Yet more forbidding wolf-range.

Deep-Forest-6 (Forest)

	You guessed it.

South-Wall-2 (South-Wall)

	The center section of the south valley wall.

Top-Of-Mound (Location)

	The top of the stone mound adds 1 point to an ambitious player's score, and gives him a glimpse of the dungeon entrance and the ledges on the east cliff that don't actually lead anywhere. (Ain't it disgusting? Chuckle.)

Gypsum-Cave (Cavern)

	The gypsum cave is another tease to make the player think he's found the dungeon entrance. He really hasn't, it's just a chance to practice exploring dark labyrinthine tunnels.

Gypsum-Passage (Cavern)

	This is just the Y intersection leading to the hermit's cave and back outside. However, note how we named this room. It's very useful to name room's close together something similar where practical.

Hermit-Cave (Cavern)

	This is the lair of Ecla, an old man and a retired accountant. He tells the player how much his treasures are worth.

Deep-Forest-7 (Forest)

	Right again.

North-Wall-5 (North-Wall)

	The easternmost section of the north valley wall.

Bottom-Of-Cliff (Location)

	The bottom of the cliff behind the rock mound, and an open invitation to a few hours of restful rock climbing...

South-Wall-3 (South-Wall)

	The easternmost section of the south valley wall. The wall curves to the northeast to take the player to the Bottom-Of-Cliff room.

East-Ledge (Location)

	The first ledge on the eastern cliff. Another invitation to waste life and limb...

Top-East-Ledge (Location)

	The uppermost eastern ledge. No way out, but worth 2 points, and the view is nice.

Inside-Blockhouse (Cavern)

	The blockhouse is lit by holes in the roof, so there's light whether the door is open or closed. Note that the north exit references the blockhouse-door-2 object rather than another room. This is acceptable practice since door objects have a knock, enter, and leave methods. This room is worth 10 points, for solving the griffon puzzle.

Bunker (Cavern)

	The bunker is lit by the blockhouse roof holes above.

Low-Dusty-Crawl (Cavern)

	This is were the guilded cage will be found, it's very similar to the same location in Adventure, to confuse players who later enounter the bird puzzle.

Skull-Room (Cavern)

	The Skull room contains the fishhook rod and the (trapped) skull and boney arm. It also lets the player use the magic word "Crogi" to teleport back and forth to the Hermit's Cave.

Rough-Passage (Cavern)

	Just another passage.

Low-Straight-Passage (Cavern)

	An intersection.

Plant-Room (Cavern)

	Just something to add to the bizarre nature of the place.

Grotto (Cavern)

	Similar to the Magnificient Cavern in Adventure, better to confuse the player about the bird puzzle. The canary is found here.

Half-And-Half-Room (Cavern)

	Just another cavern. Note that the entrance to this cavern is invisible from the Grotto.

Good-Tunnel (Cavern)

	Yet another tunnel.

Stair-Pit-1 (Cavern)

	This is the stair pit leading to deeper levels of the dungeon. The various stair pits are always found on the levels, they act as a landmark.

N/S-Passage (Cavern)

	Another tunnel.

Light-Room (Cavern)

	This room is lighted by holes in the roof. It can serve as a landmark for players lost in the dark.

Dead-End (Cavern)

	Just a dead-end.

T-Intersection (Cavern)

	Just an intersection of two passages.

E/W-Passage (Cavern)

	This passage contains a ward guarding the way east. A special leave method is defined for this room. If the player isn't carrying the mandala when he goes east, an attack message is sent to the ward to attack him. Otherwise a super-message is sent to the Location super-class to perform a normal exit.

Root-Room (Cavern)

	This rather scenic room is worth 10 points for figuring out how to get past the ward.

T-Intersection-2 (Cavern)

	Another T intersection.

Spears-End (Cavern)

	This is where the bug-bear corpse is to be found, originally with the magical spear still stuck in its chest.

Web-Passage (Cavern)

	This passage serves as a warning for the spider's lair to the north.

Spider-Lair (Cavern)

	The lair of the giant spider is a nasty place--even more so because the spider won't let you leave until you've killed it! This is done much the same way the ward is triggered, by a special leave method.

L-Intersection (Cavern)

	This intersection is a warning of the spider lair to the south.

4-Way (Cavern)

	A crossing of two passages.

Magic-Pool (Cavern)

	The room contains the magical pool to fill the phial. Other than that it's not remarkable.

E/W Passage-2 (Cavern)

	An east/west passage.

Pool-Ledge (Cavern)

	Pure scenery.	

Hot-Water (Cavern)

	An excuse for a bad pun

TADS Skeleton

