
Activities Template B/acvt

Purpose
To run the necessary rulebooks to carry out an activity.

B/acvt.§1 The Activities Stack; §2 Rule Debugging Inhibition; §3 Testing Activities; §4 Emptiness; §5 Process Activity Rulebook;

§6 Carrying Out Activities; §7 Begin; §8 For; §9 End; §10 Abandon

§1. The Activities Stack. Activities are more like nested function calls than independent processes; they
finish in reverse order of starting, and are placed on a stack. This needs only very limited size in practice:
20 might seem a bit low, but making it much higher simply means that oddball bugs in the user’s code –
where activities recursively cause themselves ad infinitum – will be caught less efficiently.

Constant MAX_NESTED_ACTIVITIES = 20;

Global activities_sp = 0;

Array activities_stack --> MAX_NESTED_ACTIVITIES;

Array activity_parameters_stack --> MAX_NESTED_ACTIVITIES;

§2. Rule Debugging Inhibition. The output from RULES or RULES ALL becomes totally illegible if
it is applied even to the activities printing names of objects, so this is inhibited when any such activity is
running. FixInhibitFlag is called each time the stack changes and ensures that inhibit_flag has exactly
this meaning.

Global inhibit_flag = 0;

Global saved_debug_rules = 0;

[FixInhibitFlag n act inhibit_rule_debugging;

for (n=0:n<activities_sp:n++) {

act = activities_stack-->n;

if (act == PRINTING_THE_NAME_ACT or PRINTING_THE_PLURAL_NAME_ACT or

PRINTING_ROOM_DESC_DETAILS_ACT or LISTING_CONTENTS_ACT or

GROUPING_TOGETHER_ACT) inhibit_rule_debugging = true;

}

if ((inhibit_flag == false) && (inhibit_rule_debugging)) {

saved_debug_rules = debug_rules;

debug_rules = 0;

}

if ((inhibit_flag) && (inhibit_rule_debugging == false)) {

debug_rules = saved_debug_rules;

}

inhibit_flag = inhibit_rule_debugging;

];

B/acvt - Activities Template §3 2

§3. Testing Activities. The following tests whether a given activity A is currently running whose
parameter-object matches description desc, where as usual the description is represented by a routine testing
membership, and where zero desc means that any parameter is valid. Alternatively, we can require a specific
parameter value of val.

[TestActivity A desc val i;

for (i=0:i<activities_sp:i++)

if (activities_stack-->i == A) {

if (desc) {

if ((desc)(activity_parameters_stack-->i)) rtrue;

} else if (val) {

if (val == activity_parameters_stack-->i) rtrue;

} else rtrue;

}

rfalse;

];

§4. Emptiness. An activity is defined by its three rulebooks: it is empty if they are all empty.

[ActivityEmpty A x;

x = Activity_before_rulebooks-->A;

if (((rulebooks_array-->x)-->0) ~= NULL) rfalse;

x = Activity_for_rulebooks-->A;

if (((rulebooks_array-->x)-->0) ~= NULL) rfalse;

x = Activity_after_rulebooks-->A;

if (((rulebooks_array-->x)-->0) ~= NULL) rfalse;

rtrue;

];

[RulebookEmpty rb;

if (((rulebooks_array-->rb)-->0) ~= NULL) rfalse;

rtrue;

];

§5. Process Activity Rulebook. This is really much like processing any rulebook, except that self is
temporarily set to the parameter, and is preserved by the process.

[ProcessActivityRulebook rulebook parameter rv;

@push self;

if (parameter) self = parameter;

rv = ProcessRulebook(rulebook, parameter, true);

@pull self;

if (rv) rtrue;

rfalse;

];

B/acvt - Activities Template §6 3

§6. Carrying Out Activities. This is a three-stage process; most activities are run by calling the
following simple routine, but some are run by calling the three subroutines independently.

[CarryOutActivity A o rv;

BeginActivity(A, o);

rv = ForActivity(A, o);

EndActivity(A, o);

return rv;

];

§7. Begin. Note that when an activity based on the conjectural “future action” is being run – in a few
parser-related cases, that is – the identity of this action is put temporarily into action, and the current value
saved while this takes place. That allows rules in the activity rulebooks to have preambles based on the
current action, and yet be tested against what is not yet the current action.

[BeginActivity A o x;

if (activities_sp == MAX_NESTED_ACTIVITIES) return RunTimeProblem(RTP_TOOMANYACTS);

activity_parameters_stack-->activities_sp = o;

activities_stack-->(activities_sp++) = A;

FixInhibitFlag();

MStack_CreateAVVars(A);

if (Activity_atb_rulebooks->A) { x = action; action = action_to_be; }

o = ProcessActivityRulebook(Activity_before_rulebooks-->A, o);

if (Activity_atb_rulebooks->A) action = x;

return o;

];

§8. For.

[ForActivity A o x;

if (Activity_atb_rulebooks->A) { x = action; action = action_to_be; }

o = ProcessActivityRulebook(Activity_for_rulebooks-->A, o);

if (Activity_atb_rulebooks->A) action = x;

return o;

];

§9. End.

[EndActivity A o rv x;

if ((activities_sp > 0) && (activities_stack-->(activities_sp-1) == A)) {

if (Activity_atb_rulebooks->A) { x = action; action = action_to_be; }

rv = ProcessActivityRulebook(Activity_after_rulebooks-->A, o);

if (Activity_atb_rulebooks->A) action = x;

activities_sp--; FixInhibitFlag();

MStack_DestroyAVVars(A);

return rv;

}

return RunTimeProblem(RTP_CANTABANDON);

];

B/acvt - Activities Template §10 4

§10. Abandon. For (very) rare cases where an activity must be abandoned midway; such an activity must
be being run by calling the three stages individually, and EndActivity must not have been called yet.

[AbandonActivity A o;

if ((activities_sp > 0) && (activities_stack-->(activities_sp-1) == A)) {

activities_sp--; FixInhibitFlag();

MStack_DestroyAVVars(A);

return;

}

return RunTimeProblem(RTP_CANTEND);

];

