
Actions Template B/actt

Purpose
To try actions by people in the model world, processing the necessary rulebooks.

B/actt.§1 Summary; §2 Action Data; §3 Requirements Bitmap; §4 Try Action; §5 I6 Angle Brackets; §6 Conversion; §7 Implicit

Take; §8 Look After Going; §9 Abbreviated Room Description; §10 Begin Action; §11 Action Primitive; §12 Type Safety; §13 Basic

Visibility Rule; §14 Basic Accessibility Rule; §15 Carrying Requirements Rule; §16 Requested Actions Require Persuasion Rule;

§17 Carry Out Requested Actions Rule; §18 Generic Verb Subroutine; §19 Work Out Details Of Specific Action Rule; §20 Actions

Bitmap; §21 Printing Actions

§1. Summary. To review: an action is an impulse to do something by a person in the model world.
Commands such as DROP POTATO are converted into actions (“dropping the Idaho potato”); sometimes
they succeed, sometimes they fail. While they run, the fairly complicated details are stored in a suite of I6
global variables such as actor, noun, inp1, and so on (see “OrderOfPlay.i6t” for details); the running of an
action is mainly a matter of processing many rulebooks, chief among them they “action processing rules”.
In general, actions can come from five different sources:
(i) As a result of parsing the player’s command: there are actually two ways this can happen, one if the

command calls for a single action, and another if it calls for a whole run of them (like TAKE ALL). See
the rules in “OrderOfPlay.i6t”.

(ii) From an I7 “try” phrase, in which case TryAction is called.
(iii) From an I6 angle-bracket-notation such as <Wait>, though this is a syntax which is deprecated now, and

is never normally used in I7. The I6 compiler converts such a syntax into a call to the R_Process below.
(iv) Through conversion of an existing action. For instance, “removing the cup from the table” is converted

in the Standard Rules to “taking the cup”. This is done via a routine called GVS_Convert.
(v) When a request is successful, the “carry out requested actions” rule turns the original action – a request

by the player, such as is produced by CHOPIN, PLAY POLONAISE – into an action by the person
asked, such as “Chopin playing the Polonaise”.

Certain exceptional cases can arise for other reasons:
(vi) Implicit taking actions are generated by the “carrying requirements rule” when the actor tries something

which requires him to be holding an item which he can see, but is not currently holding.
(vii) A partial but intentionally incomplete form of the “looking” action is generated when describing the

new location at the end of a “going” action.
In every case except (vii), the action is carried out by BeginAction, the single routine which unifies all of
these approaches. Except the last one.
This segment of the template is divided into two: first, the I6 code needed for (i) to (vii), the alternative
ways for actions to begin; and secondly the common machinery into which all actions eventually pass.

B/actt - Actions Template §2 2

§2. Action Data. This is perhaps a good place to document the ActionData array, a convenient table of
metadata about the actions. Since this is compiled by NI, the following structure can’t be modified here
without making matching changes in NI. ActionData is an I6 table containing a series of fixed-length records,
one on each action.
The routine FindAction locates the record in this table for a given action number, returning its word offset
within the table: the argument −1 means “the current action”.

Constant AD_ACTION = 0; ! The I6 action number (0 to 4095)

Constant AD_REQUIREMENTS = 1; ! Such as requiring light; a bitmap, see below

Constant AD_NOUN_KOV = 2; ! Kind of value of the first noun

Constant AD_SECOND_KOV = 3; ! Kind of value of the second noun

Constant AD_VARIABLES_CREATOR = 4; ! Routine to initialise variables owned

Constant AD_VARIABLES_ID = 5; ! Frame ID for variables owned by action

Constant AD_RECORD_SIZE = 6;

[FindAction fa t;

if (fa == -1) fa = action;

t = 1;

while (t <= ActionData-->0) {

if (fa == ActionData-->t) return t;

t = t + AD_RECORD_SIZE;

}

rfalse;

];

[ActionNumberIndexed i;

if ((i>=0) && (i < AD_RECORDS)) return ActionData-->(i*AD_RECORD_SIZE + AD_ACTION + 1);

return 0;

];

§3. Requirements Bitmap. As noted above, the AD_REQUIREMENTS field is a bitmap of flags for various
possible action requirements:

Constant TOUCH_NOUN_ABIT = $$00000001;

Constant TOUCH_SECOND_ABIT = $$00000010;

Constant LIGHT_ABIT = $$00000100;

Constant NEED_NOUN_ABIT = $$00001000;

Constant NEED_SECOND_ABIT = $$00010000;

Constant OUT_OF_WORLD_ABIT = $$00100000;

Constant CARRY_NOUN_ABIT = $$01000000;

Constant CARRY_SECOND_ABIT = $$10000000;

[NeedToCarryNoun; return TestActionMask(CARRY_NOUN_ABIT);];

[NeedToCarrySecondNoun; return TestActionMask(CARRY_SECOND_ABIT);];

[NeedToTouchNoun; return TestActionMask(TOUCH_NOUN_ABIT);];

[NeedToTouchSecondNoun; return TestActionMask(TOUCH_SECOND_ABIT);];

[NeedLightForAction; return TestActionMask(LIGHT_ABIT);];

[TestActionMask match mask at;

at = FindAction(-1);

if (at == 0) rfalse;

mask = ActionData-->(at+AD_REQUIREMENTS);

if (mask & match) rtrue;

rfalse;

];

B/actt - Actions Template §4 3

§4. Try Action. This is method (ii) in the summary above.

[TryAction req by ac n s stora smeta tbits saved_command text_of_command;

if (stora) return STORED_ACTION_TY_New(ac, n, s, by, req, stora);

tbits = req & (16+32);

req = req & 1;

@push actor; @push act_requester; @push inp1; @push inp2;

@push parsed_number; smeta = meta;

actor = by; if (req) act_requester = player; else act_requester = 0;

by = FindAction(ac);

if (by) {

if (ActionData-->(by+AD_NOUN_KOV) == OBJECT_TY) inp1 = n;

else { inp1 = 1; parsed_number = n; }

if (ActionData-->(by+AD_SECOND_KOV) == OBJECT_TY) inp2 = s;

else { inp2 = 1; parsed_number = s; }

if (((ActionData-->(by+AD_NOUN_KOV) == UNDERSTANDING_TY) ||
(ActionData-->(by+AD_SECOND_KOV) == UNDERSTANDING_TY)) && (tbits)) {

saved_command = INDEXED_TEXT_TY_Create();

INDEXED_TEXT_TY_Cast(players_command, SNIPPET_TY, saved_command);

text_of_command = INDEXED_TEXT_TY_Create();

INDEXED_TEXT_TY_Cast(parsed_number, TEXT_TY, text_of_command);

SetPlayersCommand(text_of_command);

if (tbits == 16) {

n = players_command; inp1 = 1; parsed_number = players_command;

} else {

s = players_command; inp2 = 1; parsed_number = players_command;

}

BlkFree(text_of_command);

@push consult_from; @push consult_words;

consult_from = 1; consult_words = parsed_number - 100;

}

}

BeginAction(ac, n, s, 0, true);

if (saved_command) {

@pull consult_words; @pull consult_from;

SetPlayersCommand(saved_command);

BlkFree(saved_command);

}

meta = smeta; @pull parsed_number;

@pull inp2; @pull inp1; @pull act_requester; @pull actor;

TrackActions(true, smeta);

];

B/actt - Actions Template §5 4

§5. I6 Angle Brackets. This is method (iii) in the summary above. The routine here has slightly odd
conventions and a curious name which would take too long to explain: neither can be changed without
amending the veneer code within the I6 compiler.

[R_Process a i j;

@push inp1; @push inp2;

inp1 = i; inp2 = j; BeginAction(a, i, j);

@pull inp2; @pull inp1;

];

§6. Conversion. This is method (iv) in the summary above.

Global converted_action_outcome = -1;

[GVS_Convert ac n s;

converted_action_outcome = BeginAction(ac, n, s);

rtrue;

];

[ConvertToGoingWithPush i oldrm newrm infl;

i=noun;

if (IndirectlyContains(noun, actor) == false) { move i to actor; infl = true; }

move_pushing = i;

oldrm = LocationOf(noun);

BeginAction(##Go, second);

newrm = LocationOf(actor);

move_pushing = nothing; move i to newrm;

if (newrm ~= oldrm) {

if (IndirectlyContains(i, player)) TryAction(0, player, ##Look, 0, 0);

RulebookSucceeds();

} else RulebookFails();

];

§7. Implicit Take. This is method (vi) in the summary above.

[ImplicitTake obj ks;

if (actor == player) L__M(##Miscellany, 69, obj);

else L__M(##Miscellany, 68, obj);

ClearParagraphing();

@push keep_silent; keep_silent = true;

if (act_requester) TryAction(true, actor, ##Take, obj, nothing);

else TryAction(false, actor, ##Take, obj, nothing);

@pull keep_silent;

if (obj in actor) rtrue;

rfalse;

];

B/actt - Actions Template §8 5

§8. Look After Going. This is method (vii) in the summary above.
Fundamentally, room descriptions arise through looking actions, but they are also printed after successful
going actions, with a special form of paragraph break (see “Printing.i6t” for an explanation of this). Room
descriptions through looking are always given in full, unless we have SUPERBRIEF mode set.

[LookAfterGoing;

GoingLookBreak();

AbbreviatedRoomDescription();

];

§9. Abbreviated Room Description. This is used when we want a room description with the same
abbreviation conventions as after a going action, and we don’t quite want a looking action fully to take place.
We nevertheless want to be sure that the action variables for looking exist, and in particular, we want to
set the “room-describing action” variable to the action which was prevailing when the room description was
called for. We also set “abbreviated form allowed” to “true”: when the ordinary looking action is running,
this is “false”.
The actual description occurs during LookSub, which is the specific action processing stage for the “looking”
action: thus, we use the check, carry out, after and report rules as if we were “looking”, but are unaffected
by before or instead rules.
Uniquely, this pseudo-action does not use BeginAction: it works only through the specific action processing
rules, not the main action-processing ones, though that is not easy to see from the code below because it is
hidden in the call to LookSub. The -Sub suffix is an I6 usage identifying this as the routine to go along with
the action ##Look, and so it is, but it looks nothing like the LookSub of the old I6 library. NI compiles -Sub

routines like so:
[LookSub; return GenericVerbSub(153,154,155);];

(with whatever rulebook numbers are appropriate). GenericVerbSub then runs through the specific action
processing stage.

[AbbreviatedRoomDescription prior_action pos frame_id;

prior_action = action;

action = ##Look;

pos = FindAction(##Look);

if ((pos) && (ActionData-->(pos+AD_VARIABLES_CREATOR))) {

frame_id = ActionData-->(pos+AD_VARIABLES_ID);

Mstack_Create_Frame(ActionData-->(pos+AD_VARIABLES_CREATOR), frame_id);

ProcessRulebook(SETTING_ACTION_VARIABLES_RB);

(MStack-->MstVO(frame_id, 0)) = prior_action; ! "room-describing action"

(MStack-->MstVO(frame_id, 1)) = true; ! "abbreviated form allowed"

}

LookSub(); ! The I6 verb routine for "looking"

if (frame_id) Mstack_Destroy_Frame(ActionData-->(pos+AD_VARIABLES_CREATOR), frame_id);

action = prior_action;

];

B/actt - Actions Template §10 6

§10. Begin Action. We now begin the second half of the segment: the machinery which handles all
actions.
The significance of 4096 here is that this is how I6 distinguishes genuine actions – numbered upwards in
order of creation – from what I6 calls “fake actions” – numbered upwards from 4096. Fake actions are hardly
used at all in I7, and certainly shouldn’t get here, but it’s possible nonetheless using I6 angled-brackets, so...
In other respects all we do is to save details of whatever current action is happening onto the stack, and
then call ActionPrimitive.

[BeginAction a n s moi notrack rv;

ChronologyPoint();

@push action; @push noun; @push second; @push self; @push multiple_object_item;

action = a; noun = n; second = s; self = noun; multiple_object_item = moi;

if (action < 4096) rv = ActionPrimitive();

@pull multiple_object_item; @pull self; @pull second; @pull noun; @pull action;

if (notrack == false) TrackActions(true, meta);

return rv;

];

§11. Action Primitive. This is somewhat different from the I6 library counterpart which gives it its
name, but the idea is the same. It has no arguments at all: everything it needs to know is now stored
in global variables. The routine looks long, but really contains little: it’s all just book-keeping, printing
debugging information if ACTIONS is in force, etc., with all of the actual work delegated to the action
processing rulebook.
We use a rather sneaky device to handle out-of-world actions, those for which the meta flag is set: we make it
look to the system as if the “action processing rulebook” is being followed, so that all its variables are created
and placed in scope, but at the crucial moment we descend to the specific action processing rules directly
instead of processing the main rulebook. This is what short-circuits out of world actions and protects them
from before and instead rules: see the Standard Rules for more discussion of this.

[ActionPrimitive rv p1 p2 p3 p4 p5 frame_id;

MStack_CreateRBVars(ACTION_PROCESSING_RB);

if ((keep_silent == false) && (multiflag == false)) DivideParagraphPoint();

reason_the_action_failed = 0;

frame_id = -1;

p1 = FindAction(action);

if ((p1) && (ActionData-->(p1+AD_VARIABLES_CREATOR))) {

frame_id = ActionData-->(p1+AD_VARIABLES_ID);

Mstack_Create_Frame(ActionData-->(p1+AD_VARIABLES_CREATOR), frame_id);

}

if (ActionVariablesNotTypeSafe()) {

if (frame_id ~= -1)

Mstack_Destroy_Frame(ActionData-->(p1+AD_VARIABLES_CREATOR), frame_id);

MStack_DestroyRBVars(ACTION_PROCESSING_RB);

return;

}

ProcessRulebook(SETTING_ACTION_VARIABLES_RB);

#IFDEF DEBUG;

if ((trace_actions) && (FindAction(-1))) {

print "["; p1=actor; p2=act_requester; p3=action; p4=noun; p5=second;

DB_Action(p1,p2,p3,p4,p5);

B/actt - Actions Template §11 7

print "]^"; ClearParagraphing();

}

++debug_rule_nesting;

#ENDIF;

TrackActions(false, meta);

BeginFollowRulebook();

if ((meta) && (actor ~= player)) { L__M(##Miscellany, 74, actor); rv = RS_FAILS; }

else if (meta) { DESCEND_TO_SPECIFIC_ACTION_R(); rv = RulebookOutcome(); }

else { ProcessRulebook(ACTION_PROCESSING_RB); rv = RulebookOutcome(); }

#IFDEF DEBUG;

--debug_rule_nesting;

if ((trace_actions) && (FindAction(-1))) {

print "["; DB_Action(p1,p2,p3,p4,p5); print " - ";

switch (rv) {

RS_SUCCEEDS: print "succeeded";

RS_FAILS: print "failed";

#IFNDEF MEMORY_ECONOMY;

if (reason_the_action_failed)

print " the ",

(RulePrintingRule) reason_the_action_failed;

#ENDIF;

default: print "ended without result";

}

print "]^"; say__p = 1;

SetRulebookOutcome(rv); ! In case disturbed by printing activities

}

#ENDIF;

if (rv == RS_SUCCEEDS) UpdateActionBitmap();

EndFollowRulebook();

if (frame_id ~= -1) {

p1 = FindAction(action);

Mstack_Destroy_Frame(ActionData-->(p1+AD_VARIABLES_CREATOR), frame_id);

}

MStack_DestroyRBVars(ACTION_PROCESSING_RB);

if ((keep_silent == false) && (multiflag == false)) DivideParagraphPoint();

if (rv == RS_SUCCEEDS) rtrue;

rfalse;

];

B/actt - Actions Template §12 8

§12. Type Safety. Some basic action requirements have to be met before we can go any further: if they
aren’t, then it isn’t type-safe even to run the action processing rulebook.
(i) For an out of world action, we set the meta flag. Otherwise:
(ii) If either the noun or second noun is a topic, then this is an action arising from parsing (such actions do

not arise through the “try” phrase, unless by stored actions in which case this has all happened before
and doesn’t need to be done again) – the parser places details of which words make up the topic in the
I6 global variables consult_words and consult_from. We convert them to a valid I7 snippet value.

(iii) If either the first or second noun is supposed to be an object but seems here to be a value, or vice versa,
we stop with a parser error. (This should be fairly difficult to provoke: NI’s type-checking will make it
difficult to arrange without I6 subterfuges.)

(iv) If either the first or second noun is supposed to be an object and required to exist, yet is missing, we
use the “supplying a missing noun” or “supplying a missing second noun” activities to fill the void.

We return true if type safety is violated, false if all is well.

[ActionVariablesNotTypeSafe mask noun_kova second_kova at;

at = FindAction(-1); if (at == 0) rfalse; ! For any I6-defined actions

noun_kova = ActionData-->(at+AD_NOUN_KOV);

second_kova = ActionData-->(at+AD_SECOND_KOV);

!print "at = ", at, " nst = ", noun_kova, "^";

!print "consult_from = ", consult_from, " consult_words = ", consult_from, "^";

!print "inp1 = ", inp1, " noun = ", noun, "^";

!print "inp2 = ", inp2, " second = ", second, "^";

!print "sst = ", second_kova, "^";

if (noun_kova == SNIPPET_TY or UNDERSTANDING_TY) {

if (inp1 ~= 1) { inp2 = inp1; second = noun; }

parsed_number = 100*consult_from + consult_words;

inp1 = 1; noun = nothing; ! noun = parsed_number;

}

if (second_kova == SNIPPET_TY or UNDERSTANDING_TY) {

parsed_number = 100*consult_from + consult_words;

inp2 = 1; second = nothing; ! second = parsed_number;

}

mask = ActionData-->(at+AD_REQUIREMENTS);

if (mask & OUT_OF_WORLD_ABIT) { meta = 1; rfalse; }

if (inp1 == 1) {

if (noun_kova == OBJECT_TY) {

return L__M(##Miscellany, 61); }

} else {

if (noun_kova ~= OBJECT_TY) {

return L__M(##Miscellany, 62); }

if ((mask & NEED_NOUN_ABIT) && (noun == nothing)) {

@push act_requester; act_requester = nothing;

CarryOutActivity(SUPPLYING_A_MISSING_NOUN_ACT);

@pull act_requester;

if (noun == nothing) {

if (say__p) rtrue;

return L__M(##Miscellany, 59);

}

}

if (((mask & NEED_NOUN_ABIT) == 0) && (noun ~= nothing)) {

return L__M(##Miscellany, 60); }

}

B/actt - Actions Template §13 9

if (inp2 == 1) {

if (second_kova == OBJECT_TY) {

return L__M(##Miscellany, 63); }

} else {

if (second_kova ~= OBJECT_TY) {

return L__M(##Miscellany, 64); }

if ((mask & NEED_SECOND_ABIT) && (second == nothing)) {

@push act_requester; act_requester = nothing;

CarryOutActivity(SUPPLYING_A_MISSING_SECOND_ACT);

@pull act_requester;

if (second == nothing) {

if (say__p) rtrue;

return L__M(##Miscellany, 65);

}

}

if (((mask & NEED_SECOND_ABIT) == 0) && (second ~= nothing)) {

return L__M(##Miscellany, 66); }

}

rfalse;

];

§13. Basic Visibility Rule. This is one of the I6 primitive rules in the action processing rulebook: see
the account in the Standard Rules for details.
Note that this rule only blocks the player from acting in darkness: this is because light is only reckoned from
the player’s perspective in any case, so that it would be unfair to apply the rule to any other person.

[BASIC_VISIBILITY_R;

if (act_requester) rfalse;

if ((NeedLightForAction()) &&

(actor == player) &&

(ProcessRulebook(VISIBLE_RB)) &&

(RulebookSucceeded())) {

BeginActivity(REFUSAL_TO_ACT_IN_DARK_ACT);

if (ForActivity(REFUSAL_TO_ACT_IN_DARK_ACT)==false) L__M(##Miscellany, 17);

EndActivity(REFUSAL_TO_ACT_IN_DARK_ACT);

reason_the_action_failed = BASIC_VISIBILITY_R;

RulebookFails();

rtrue;

}

rfalse;

];

B/actt - Actions Template §14 10

§14. Basic Accessibility Rule. This is one of the I6 primitive rules in the action processing rulebook:
see the account in the Standard Rules for details.

[BASIC_ACCESSIBILITY_R mask at;

if (act_requester) rfalse;

at = FindAction(-1);

if (at == 0) rfalse;

mask = ActionData-->(at+AD_REQUIREMENTS);

if ((mask & TOUCH_NOUN_ABIT) && noun && (inp1 ~= 1)) {

if (noun ofclass K3_direction) {

RulebookFails();

reason_the_action_failed = BASIC_ACCESSIBILITY_R;

if (actor~=player) rtrue;

return L__M(##Miscellany, 67);

}

if (ObjectIsUntouchable(noun, (actor~=player), FALSE, actor)) {

RulebookFails();

reason_the_action_failed = BASIC_ACCESSIBILITY_R;

rtrue;

}

}

if ((mask & TOUCH_SECOND_ABIT) && second && (inp2 ~= 1)) {

if (second ofclass K3_direction) {

RulebookFails();

reason_the_action_failed = BASIC_ACCESSIBILITY_R;

if (actor~=player) rtrue;

return L__M(##Miscellany, 67);

}

if (ObjectIsUntouchable(second, (actor~=player), FALSE, actor)) {

RulebookFails();

reason_the_action_failed = BASIC_ACCESSIBILITY_R;

rtrue;

}

}

rfalse;

];

B/actt - Actions Template §15 11

§15. Carrying Requirements Rule. This is one of the I6 primitive rules in the action processing
rulebook: see the account in the Standard Rules for details.

[CARRYING_REQUIREMENTS_R mask at;

at = FindAction(-1);

if (at == 0) rfalse;

mask = ActionData-->(at+AD_REQUIREMENTS);

if ((mask & TOUCH_NOUN_ABIT) && noun && (inp1 ~= 1)) {

if ((mask & CARRY_NOUN_ABIT) && (noun notin actor)) {

BeginActivity(IMPLICITLY_TAKING_ACT, noun);

if (ForActivity(IMPLICITLY_TAKING_ACT, noun)==false)

ImplicitTake(noun);

EndActivity(IMPLICITLY_TAKING_ACT, noun);

!if (act_requester) rfalse;

if (noun notin actor) {

RulebookFails();

reason_the_action_failed = CARRYING_REQUIREMENTS_R;

rtrue;

}

}

}

if ((mask & TOUCH_SECOND_ABIT) && second && (inp2 ~= 1)) {

if ((mask & CARRY_SECOND_ABIT) && (second notin actor)) {

BeginActivity(IMPLICITLY_TAKING_ACT, second);

if (ForActivity(IMPLICITLY_TAKING_ACT, second)==false)

ImplicitTake(second);

EndActivity(IMPLICITLY_TAKING_ACT, second);

!if (act_requester) rfalse;

if (second notin actor) {

RulebookFails();

reason_the_action_failed = CARRYING_REQUIREMENTS_R;

rtrue;

}

}

}

rfalse;

];

B/actt - Actions Template §16 12

§16. Requested Actions Require Persuasion Rule. This is one of the I6 primitive rules in the action
processing rulebook: see the account in the Standard Rules for details.

[REQUESTED_ACTIONS_REQUIRE_R rv;

if ((actor ~= player) && (act_requester)) {

@push say__p;

say__p = 0;

rv = ProcessRulebook(PERSUADE_RB);

if (RulebookSucceeded() == false) {

if ((deadflag == false) && (say__p == FALSE)) L__M(##Miscellany, 72, actor);

ActRulebookFails(rv); rtrue;

}

@pull say__p;

}

rfalse;

];

§17. Carry Out Requested Actions Rule. This is one of the I6 primitive rules in the action processing
rulebook: see the account in the Standard Rules for details.

[CARRY_OUT_REQUESTED_ACTIONS_R rv;

if ((actor ~= player) && (act_requester)) {

@push act_requester; act_requester = nothing;

rv = BeginAction(action, noun, second);

if (((meta) || (rv == false)) && (deadflag == false)) {

if (ProcessRulebook(UNSUCCESSFUL_ATTEMPT_RB) == false) L__M(##Miscellany, 58);

}

@pull act_requester;

ActRulebookSucceeds();

rtrue;

}

rfalse;

];

§18. Generic Verb Subroutine. In I6, actions are carried out by routines with names like TakeSub,
consisting of -Sub tacked on to the action name Take. Sub stands for “subroutine”: this is all a convention
going back to Inform 1, which was in 1993 practically an assembler. In the I6 code generated by I7, every
-Sub routine corresponding to an I7 action consists only of a call to GenericVerbSub which specifies the three
rulebooks it owns: its check, carry out and report rulebooks.

Array Details_of_Specific_Action-->5;

[GenericVerbSub ch co re vis rv;

@push converted_action_outcome;

converted_action_outcome = -1;

Details_of_Specific_Action-->0 = true;

if (meta) Details_of_Specific_Action-->0 = false;

Details_of_Specific_Action-->1 = keep_silent;

Details_of_Specific_Action-->2 = ch; ! Check rules for the action

Details_of_Specific_Action-->3 = co; ! Carry out rules for the action

Details_of_Specific_Action-->4 = re; ! Report rules for the action

ProcessRulebook(SPECIFIC_ACTION_PROCESSING_RB, 0, true);

B/actt - Actions Template §19 13

if ((RulebookFailed()) && (converted_action_outcome == 1)) ActRulebookSucceeds();

@pull converted_action_outcome;

rtrue;

];

§19. Work Out Details Of Specific Action Rule. This is one of the I6 primitive rules in the specific
action processing rulebook, and it’s basically a trick to allow information known to the GenericVerbSub

routine to be passed down as rulebook variables for the specific action-processing rules – in effect allowing
us to pass not one but five parameters to the rulebook: the out-of-world and silence flags, plus the three
specific rulebooks needed to process the action.

[WORK_OUT_DETAILS_OF_SPECIFIC_R;

MStack-->MstVO(SPECIFIC_ACTION_PROCESSING_RB, 0) = Details_of_Specific_Action-->0;

MStack-->MstVO(SPECIFIC_ACTION_PROCESSING_RB, 1) = Details_of_Specific_Action-->1;

MStack-->MstVO(SPECIFIC_ACTION_PROCESSING_RB, 2) = Details_of_Specific_Action-->2;

MStack-->MstVO(SPECIFIC_ACTION_PROCESSING_RB, 3) = Details_of_Specific_Action-->3;

MStack-->MstVO(SPECIFIC_ACTION_PROCESSING_RB, 4) = Details_of_Specific_Action-->4;

rfalse;

];

§20. Actions Bitmap. This is a fairly large bitmap recording which actions have succeeded thus far on
which nouns. It was to some extent an early attempt at implementing a past-tense system; I’m not at all sure
it was successful, since it is hindered by certain restrictions – it only records action/noun combinations, for
instance, and the notion of “success” is a vexed one for actions anyway. There is a clearly defined meaning,
but it doesn’t always correspond to what the user might expect, which is unfortunate.

[TestActionBitmap obj act i j k bitmap;

if (obj == nothing) bitmap = ActionHappened;

else {

if (~~(obj provides action_bitmap)) rfalse;

bitmap = obj.&action_bitmap;

}

if (act == -1) return (((bitmap->0) & 1) ~= 0);

for (i=0, k=2; i<ActionCount; i++) {

if (act == ActionCoding-->i) {

return (((bitmap->j) & k) ~= 0);

}

k = k*2; if (k == 256) { k = 1; j++; }

}

rfalse;

];

[UpdateActionBitmap;

SetActionBitmap(noun, action);

if (action == ##Go) SetActionBitmap(location, ##Enter);

];

[SetActionBitmap obj act i j k bitmap;

for (i=0, k=2; i<ActionCount; i++) {

if (act == ActionCoding-->i) {

if (obj provides action_bitmap) {

bitmap = obj.&action_bitmap;

bitmap->0 = (bitmap->0) | 1;

B/actt - Actions Template §21 14

bitmap->j = (bitmap->j) | k;

}

ActionHappened->0 = (ActionHappened->0) | 1;

ActionHappened->j = (ActionHappened->j) | k;

}

k = k*2; if (k == 256) { k = 1; j++; }

}

];

§21. Printing Actions. This is really for debugging purposes, but also provides us with a way to print a
stored action, for instance, or to print an action name value. (For instance, printing an action name might
result in “taking”; printing a whole action might produce “Henry taking the grapefruit”.)

[SayActionName act; DB_Action(0, 0, act, 0, 0, 2);];

[DA_Name n; if (n ofclass K3_direction) print (name) n; else print (the) n;];

[DA_Topic x a b c d i cf cw;

cw = x%100; cf = x/100;

print "~";

for (a=cf:d<cw:d++,a++) {

wn = a; b = WordAddress(a); c = WordLength(a);

for (i=b:i<b+c:i++) {

print (char) 0->i;

}

if (d<cw-1) print " ";

}

print "~";

];

[DA_Number n; print n;];

[DA_TruthState n; if (n==0) print "false"; else print "true";];

[DB_Action ac acr act n s for_say t at l j v c clc;

if ((for_say == 0) && (debug_rule_nesting > 0))

print "(", debug_rule_nesting, ") ";

if ((ac ~= player) && (for_say ~= 2)) {

if (acr) print "asking ", (the) ac, " to try ";

else print (the) ac, " ";

}

DB_Action_Details(act, n, s, for_say);

if ((keep_silent) && (for_say == 0)) print " - silently";

];

