
The cblorb Manual P/man

Purpose
A guide for users of cblorb.

P/man.§1-3 Some definitions; §4 cblorb within the Inform user interface; §5-6 cblorb at the command line; §7-11 Example blurb

scripts; §12-21 Specification of the Blurb language

§1. Some definitions. cblorb is a command-line tool which forms one of the components of the Inform
7 design system for interactive fiction. All installations of Inform 7 contain a copy of cblorb, though few
users are aware of it, since it doesn’t usually communicate with them directly. Instead, the Inform user
interface calls it when needed. The moment comes at the end of the translation process, but only when the
Release button rather than the Go or Replay buttons was clicked. cblorb has two main jobs: to bind up the
translated project, together with any pictures, sounds, or cover art, into a single file called a “blorb” which
can be given to players on other machines to play; and to produce associated websites, solution files and so
on as demanded by “Release...” instruction(s) in the source text.

§2. “Blorb” is a general-purpose wrapper format designed as a way to gather together audiovisual media
and bibliographic data for works of IF. The format was devised and formally specified by Andrew Plotkin
around 2000, and its name is borrowed from that of a magic spell in Infocom’s classic work, Enchanter.
(“The blorb spell (safely protect a small object as though in a strong box).”) Although Inform 6, the then
current version, did not itself generate blorb files, a Perl script called perlblorb was provided in 2001 so
that the user could perform the wrapping-up process. perlblorb is no longer used, and survives only in the
name of cblorb, which is a C version of what had previously been written in Perl. This means it can run on
machines with no Perl installation, which Inform 7 needs to be able to do. Unlike perlblorb, cblorb is “under
the hood”; the user does not need to give it instructions. This manual is therefore useful only for people
needing to generate Inform-related websites, or who are maintaining the Inform user interface applications.

§3. Sentences in Inform source text such as:

Release along with public source text, cover art, and a website.

do in effect transmit instructions to cblorb, but cblorb doesn’t read them in this natural-language form.
Instead, the ni component of Inform 7 translates these instructions into a script for cblorb to follow. This
script is called a “blurb”.
“Blurb” is a mini-language for specifying how the materials in a work of IF should be packaged up for release.
It was originally codified in 2001 as a standard way to describe how a blorb file should be put together, but
it was extended in 2005 and again in 2008 so that it could also organise accompanying files released along
with the blorb.
The original Blurb language was documented in chapter 43 of the DM4 (i.e., the Inform Designer’s Manual,
fourth edition, 2001); for clarity, we will call that language “Blurb 2001”. Today’s Blurb language is a little
different. Some features of Blurb 2001 are deprecated and no longer used, while numerous other syntaxes
are new. Because of this the DM4 specification is no longer useful, so we will give a full description below of
Blurb as it currently stands.



P/man - The cblorb Manual §4 2

§4. cblorb within the Inform user interface. This is the sequence of events when the user clicks Release
in the user interface application (the “interface”):
(1) The interface calls ni, the I7 compiler, as normal except that the -release command-line switch is

specified.
(2) ni compiles the source text into I6 code. If Problems occur, ni exits with a return code of 1, and the

interface displays those, and then stops the process.
(3) If no Problems occur, ni writes two additional files besides the I6 code it always writes:

(a) Metadata.iFiction, an iFiction record;
(b) Release.blurb, a blurb file of instructions for cblorb to follow later.

(4) ni having returned 0 to indicate success, the interface next calls the Inform 6 compiler (called, e.g.,
inform-6.31-biplatform, but we’ll call it i6 here). The interface calls i6 as normal except that the S

and D switches, for strict checking and for debugging, are off instead of on. If ni works properly then i6

should certainly not produce syntax errors, though it will surely produce warnings; all the same it can
fail if, say, Z-machine memory limits are exceeded. The interface should deal with such failures exactly
as it would in a non-Release run.

(5) i6 having returned 0 to indicate success, the interface next calls cblorb as follows. Let Path be the
path to the folder containing the Inform project being released, which we’ll call This.inform. Then the
interface should call:
cblorb -platform "Path/This.inform/Release.blurb" "Path/This.inform/Build/output.gblorb"

where -platform should be one of -osx, -windows or -unix. (The default is -osx.) The two filename
arguments are the Blurb script for cblorb to follow, which was written by ni at step 3, and the filename
of the Blorb file which it should write. Note that the interface should give this the extension “.gblorb”
if the Glulx setting is in force, and “.zblorb” if the Z-machine.

(6) Like its predecessors, cblorb can produce error messages, and it returns 0 (success) or 1 (failure). But
the interface doesn’t actually need to look at that, because cblorb also produces a much fuller report
in the form of an HTML page to be displayed on the Problems tab. This is StatusCblorb.html, in the
project’s Build folder. (This is a change made in 2010: in the past, the interface simply chose between
a generic success and failure page on the basis of the return code.)

(7) There are no more tools to call, but the interface has one last duty (if cblorb succeeded) – to move the
blorb somewhere sensible on disc, where the user can see it. Leaving it where it is will not do – the user
never looks inside the Build project of a folder, which on Mac OS X, for instance, is not even visible. To
see what to do, the interface must look at the textual output from cblorb, printed to stdout (of course
the interface is free to redirect this if it wants to). If cblorb printed a line in the form:
Copy blorb to: [[...]]

then the interface should do as it’s told. For instance:
Copy blorb to: [[/Users/gnelson/Examples/Bronze Materials/Release/Bronze.gblorb]]

If cblorb printed no such line, the interface should put up a Save As... dialogue box, and invite the user
to choose a destination.

§5. cblorb at the command line. When using cblorb as a command-line tool, it’s probably convenient
to download a standalone copy from the Inform website, though that’s identical to the copy squirreled away
somewhere in the application. On Mac OS X, it lives at:

Inform.app/Contents/Resources/Compilers/cBlorb

Its main usage is:
cblorb -platform [-options] blurbfile [blorbfile]

where -platform should be one of -osx, -windows, -unix. At present the only practical difference this makes
is that the Windows setting causes cblorb to use \ instead of / as a filename separator.
The blorbfile filename is optional since cblorb does not always need to make a blorb; that depends on the
instructions handed to it in the blurbfile.



P/man - The cblorb Manual §6 3

§6. The other command-line options are:
-help: prints summaries of command-line use and the Blurb language.
-trace: mainly for debugging, but possibly also useful as a verbose mode.
-project Whatever.inform: tells cblorb to assume the usual settings for this project. (That means the
blurbfile is set to Whatever.inform/Release.blurb and the blorbfile to Whatever.inform/Build/output.gblorb.)

§7. Example blurb scripts. This first script instructs cblorb to carry out its mission – it makes a simple
Blorb wrapping up a story file with bibliographic data, but nothing more, and nothing else is released.

storyfile "/Users/gnelson/Examples/Zinc.inform/Build/output.ulx" include

ifiction "/Users/gnelson/Examples/Zinc.inform/Metadata.iFiction" include

These two lines tell cblorb to include the story file and the iFiction record respectively.

§8. A more ambitious Blorb can be made like so:
storyfile leafname "Audiophilia.gblorb"

storyfile "/Users/gnelson/Examples/Audiophilia.inform/Build/output.ulx" include

ifiction "/Users/gnelson/Examples/Audiophilia.inform/Metadata.iFiction" include

cover "/Users/gnelson/Examples/Audiophilia Materials/Cover.png"

picture 1 "/Users/gnelson/Examples/Audiophilia Materials/Cover.png"

sound 3 "/Users/gnelson/Examples/Audiophilia Materials/Sounds/Powermac.aiff"

sound 4 "/Users/gnelson/Examples/Audiophilia Materials/Sounds/Bach.ogg"

The cover image is included only once, but declaring it as picture 1 makes it available to the story file for
display internally as well as externally. Resource ID 2, apparently skipped, is in fact the story file.

§9. And here’s a very short script, which makes cblorb generate a solution file from the Skein of a project:
project folder "/Users/gnelson/Examples/Zinc.inform"

release to "/Users/gnelson/Examples/Zinc Materials/Release"

solution

This time no blorb file is made. The opening line tells cblorb which Inform project we’re dealing with,
allowing it to look at the various files inside – its Skein, for instance, which is used to create a solution. The
second line tells cblorb where to put all of its output – everything it makes. Only the third line directly
causes cblorb to do anything.

§10. More ambitiously, this time we’ll make a website for a project, but again without making a blorb:
project folder "/Users/gnelson/Examples/Audiophilia.inform"

release to "/Users/gnelson/Examples/Audiophilia Materials/Release"

placeholder [IFID] = "AD5648BA-18A2-48A6-9554-4F6C53484824"

placeholder [RELEASE] = "1"

placeholder [YEAR] = "2009"

placeholder [TITLE] = "Audiophilia"

placeholder [AUTHOR] = "Graham Nelson"

placeholder [BLURB] = "A test project for sound effect production."

template path "/Users/gnelson/Library/Inform/Templates"

css

website "Standard"

The first novelty here is the setting of placeholders. These are named pieces of text which appear on the
website being generated: where the text “[RELEASE]” appears in the template, cblorb writes the value
we’ve set for it, in this case “1”. Some of these values look like numbers, but to cblorb they all hold text.
A few placeholder names are reserved by cblorb for its own use, and it will produce errors if we try to set
those, but none of those in this example is reserved.



P/man - The cblorb Manual §11 4

Template paths tell cblorb where to find templates. Any number of these can be set – including none at
all, but if so then commands needing a named template, like website, can’t be used. cblorb looks for any
template it needs by trying each template path in turn (the earliest defined having the highest priority). The
blurb files produced by ni in its -release mode containa chain of three template paths, for the individual
project folder, the user’s library of installed templates, and the built-in stock inside the Inform user interface
application, respectively.
The command css tells cblorb that it is allowed to use CSS styles to make its web pages more appealing to
look at: this results in generally better HTML, easier to use in other contexts, too.
All of that set things up so that the website command could be used, which actually does something – it
creates a website in the release-to location, taking its design from the template named. If we were to add
any of these commands –

source public

solution public

ifiction public

– then the website would be graced with these additions.

§11. The previous examples all involved Inform projects, but cblorb can also deal with stand-alone files of
Inform source text – notably extensions. For example, here we make a website out of an extension:

release to "Test Site"

placeholder [TITLE] = "Locksmith"

placeholder [AUTHOR] = "Emily Short"

placeholder [RUBRIC] = "Implicit handling of doors and..." and so on
template path "/Users/gnelson/Library/Inform/Templates"

css

release file "style.css" from "Extended"

release file "index.html" from "Extended"

release file "Extensions/Emily Short/Locksmith.i7x"

release source "Extensions/Emily Short/Locksmith.i7x" using "extsrc.html" from "Extended"

This time we’re using a template called “Extended”, and the script tells cblorb exactly what to do with it.
The “release file... from...” command tells cblorb to extract the named file from this template and to copy it
into the release folder – if it’s a “.html” file, placeholders are substituted with their values. The simpler form,
“release file ...”, just tells cblorb to copy that actual file – here, it puts a copy of the extension itself into the
release folder. The final line produces a run of pages, in all likelihood, for the source and documentation of
the extension, with the design drawn from “Extended” again.
(“Extended” isn’t supplied inside Inform; it’s a template we’re using to help generate the Inform website,
rather than something meant for end users. There’s nothing very special about it, in any case.)



P/man - The cblorb Manual §12 5

§12. Specification of the Blurb language. A blorb script should be a text file, using the Unicode
character set and encoded as UTF-8 without a byte order marker – in other words, a plain text file. It
consists of lines of up to 10239 bytes in length each, divided by any of the four line-end markers in common
use (CR, LF, CR LF or LF CR), though the same line-end marker should be used throughout the file.
Each command occupies one and only one line of text. (In Blorb 2001, the now-deprecated palette command
could occupy multiple lines, but cblorb will choke on such a usage.) Lines are permitted to be empty or to
contain only white space. Lines whose first non-white-space character is an exclamation mark are treated as
comments, that is, ignored. “White space” means spaces and tab characters. An entirely empty blurb file,
containing nothing but white space, is perfectly legal though useless.
In the following description:
〈string〉 means any text within double-quotes, not containing either double-quote or new-line characters, of
up to 2048 bytes.
〈filename〉 means any double-quoted filename.
〈number〉 means a decimal number in the range 0 to 32767.
〈id〉 means either nothing at all, or a 〈number〉, or a sequence of up to 20 letters, digits or underscore
characters _.
〈dim〉 indicates screen dimensions, and must take the form 〈number〉x〈number〉.
〈ratio〉 is a fraction in the form 〈number〉/〈number〉. 0/0 is legal but otherwise both numbers must be positive.
〈colour〉 is a colour expressed as six hexadecimal digits, as in some HTML tags: for instance F5DEB3 is the
colour of wheat, with red value F5 (on a scale 00, none, to FF, full), green value DE and blue value B3.
Hexadecimal digits may be given in either upper or lower case.

§13. The full set of commands is as follows. First, core commands for making a blorb:
author 〈string〉

Adds this author name to the file.
copyright 〈string〉

Adds this copyright declaration to the blorb file. It would normally consist of short text such as “(c) J.
Mango Pineapple 2007” rather than a lengthy legal discourse.

release 〈number〉
Gives this release number to the blorb file.

auxiliary 〈filename〉 〈string〉
Tells us that an auxiliary file – for instance, a PDF manual – is associated with the release but will not be
embedded directly into the blorb file. For instance,

auxiliary "map.png" "Black Pete’s treasure map"

The string should be a textual description of the contents. Every auxiliary file should have a filename
including an extension usefully describing its format, as in “.png”: if there is no extension, then the auxiliary
resource is assumed to be a mini-website housed in a subfolder with this name.

ifiction 〈filename〉 include
The file should be a valid iFiction record for the work. This is an XML file specified in the Treaty of Babel,
a cross-IF-system standard for specifying bibliographic data; it will be embedded into the blorb.

storyfile 〈filename〉 unsupported by cblorb

storyfile 〈filename〉 include
Specifies the filename of the story file which these resources are being attached to. Blorb 2001 allowed for
blorbs to be made which held everything to do with the release except the story file; that way a release
might consist of one story file plus one Blorb file containing its pictures and sounds. The Blorb file would
then contain a note of the release number, serial code and checksum of the associated story file so that an
interpreter can try to match up the two files at run-time. If the include option is used, however, the entire



P/man - The cblorb Manual §14 6

story file is embedded within the Blorb file, so that game and resources are all bound up in one single file.
cblorb always does this, and does not support storyfile without include.

§14. Second, now-deprecated commands describing our ideal screen display:
palette 16 bit unsupported by cblorb

palette 32 bit unsupported by cblorb

palette { 〈colour-1〉 〈colour-N〉 } unsupported by cblorb

Blorb allows designers to signal to the interpreter that a particular colour-scheme is in use. The first two
options simply suggest that the pictures are best displayed using at least 16-bit, or 32-bit, colours. The
third option specifies colours used in the pictures in terms of red/green/blue levels, and the braces allow the
sequence of colours to continue over many lines. At least one and at most 256 colours may be defined in this
way. This is only a “clue” to the interpreter; see the Blorb specification for details.

resolution 〈dim〉 unsupported by cblorb

resolution 〈dim〉 min 〈dim〉 unsupported by cblorb

resolution 〈dim〉 max 〈dim〉 unsupported by cblorb

resolution 〈dim〉 min 〈dim〉 max 〈dim〉 unsupported by cblorb

Allows the designer to signal a preferred screen size, in real pixels, in case the interpreter should have any
choice over this. The minimum and maximum values are the extreme values at which the designer thinks
the game will be playable: they’re optional, the default values being 0× 0 and ∞×∞.

§15. Third, commands for adding audiovisual resources:
sound 〈id〉 〈filename〉
sound 〈id〉 〈filename〉 repeat 〈number〉 unsupported by cblorb

sound 〈id〉 〈filename〉 repeat forever unsupported by cblorb

sound 〈id〉 〈filename〉 music unsupported by cblorb

sound 〈id〉 〈filename〉 song unsupported by cblorb

Tells us to take a sound sample from the named file and make it the sound effect with the given number. Most
forms of sound are now deprecated: repeat information (the number of repeats to be played) is meaningful
only with Z-machine version 3 story files using sound effects, and Inform 7 does not generate those; the music

and song keywords specify unusual sound formats. Nowadays the straight sound command should always be
used regardless of format.

picture 〈id〉 〈filename〉
picture 〈id〉 〈filename〉 scale 〈ratio〉 unsupported by cblorb

picture 〈id〉 〈filename〉 scale min 〈ratio〉 unsupported by cblorb

picture 〈id〉 〈filename〉 scale 〈ratio〉 min 〈ratio〉 unsupported by cblorb

(and so on) is a similar command for images. In 2001, the image file was required to be a PNG, but it can
now alternatively be a JPEG.
Optionally, the designer can specify a scale factor at which the interpreter will display the image – or,
alternatively, a range of acceptable scale factors, from which the interpreter may choose its own scale factor.
(By default an image is not scaleable and an interpreter must display it pixel-for-pixel.) There are three
optional scale factors given: the preferred scale factor, the minimum and the maximum allowed. The
minimum and maximum each default to the preferred value if not given, and the default preferred scale
factor is 1. Scale factors are expressed as fractions: so for instance,

picture "flag/png" scale 3/1

means “always display three times its normal size”, whereas
picture "backdrop/png" scale min 1/10 max 8/1

means“you can display this anywhere between one tenth normal size and eight times normal size, but if
possible it ought to be just its normal size”.



P/man - The cblorb Manual §16 7

cblorb does not support any of the scaled forms of picture. As with the exotic forms of sound, they now
seem passé. We no longer need to worry too much about the size of the blorb file, nor about screens with
very low resolution; an iPhone today has a screen resolution close to that of a typical desktop of 2001.

cover 〈filename〉
specifies that this is the cover art; it must also be declared with a picture command in the usual way, and
must have picture ID 1.

§16. Three commands help us to specify locations.
project folder 〈filename〉

Tells cblorb to look for associated resources, such as the Skein file, within this Inform project.
release to 〈filename〉

Tells cblorb that all of its output should go into this folder. (Well, except that the blorb file itself will
be written to the location specified in the command line arguments, but see the description above of how
cblorb then contrives to move it.) The folder must already exist, and cblorb won’t create it. Under some
circumstances Inform will seem to be creating the release folder if it doesn’t already exist, but that’s always
the work of ni, not cblorb.

template path 〈filename〉
Sets a search path for templates – a folder in which to look for them. There can be any number of template
paths set, and cblorb checks them in order of declaration (i.e., most important first).

§17. Next we come to commands for specifying what cblorb should release. At present it has seven forms
of output: Blorb file, solution file, source text, iFiction record, miscellaneous file, website and interpreter.
No explicit single command causes a Blorb file to be generated; it will be made automatically if one of the
above commands to include the story file, pictures, etc., is present in the script, and otherwise not generated.

solution

solution public

causes a solution file to be generated in the release folder. The mechanism for this is described in Writing
with Inform. The difference between the two commands affects only a website also being made, if one is: a
public solution will be included in its links, thus being made available to the public who read the website.

ifiction

ifiction public

is similar, but for the iFiction record of the project.
source

source public

is again similar, but here there’s a twist. If the source is public, then cblorb doesn’t just include it on a
website: it generates multiple HTML pages to show it off in HTML form, as well as including the plain text
original.
Miscellaneous files can be released like so:

release file 〈filename〉
Here cblorb acts as no more than a file-copy utility; a verbatim copy of the named file is placed in the release
folder.



P/man - The cblorb Manual §18 8

§18. Finally we come to web pages.
css

enables the use of CSS-defined styles within the HTML generated by cblorb. This has an especially marked
effect when cblorb is generating HTML versions of Inform source text, and is a good thing. Unless there is
reason not to, every blurb script generating websites ought to contain this command.

release file 〈filename〉 from 〈template〉
causes the named file to be found from the given template. If it can’t be found in that template, cblorb tries
to find it from a template called “Standard”. If it isn’t there either, or cblorb can’t find any template called
“Standard” in any of its template paths (see above), then an error message is produced. But if all goes well
the file is copied into the release folder. If it has the file extension “.html” (in lower case, and using that
exact form, i.e., not “.HTM” or some other variation) then any placeholders in the file will be expanded with
their values. A few reserved placeholders have special effects, causing cblorb to expand interesting text in
their places – see Writing with Inform for more on this.

release source 〈filename〉 using 〈filename〉 from 〈template〉
makes cblorb convert the Inform source text in the first filename into a suite of web pages using the style of
the given file from the given template.

website 〈template〉
saves the best until last: it makes a complete website for an Inform project, using the named template. This
means that the CSS file is copied into place (assuming css is used), the “index.html” is released from the
template, the source of the project is run through release source using “source.html” from the template
(assuming source public is used), and any extra files specified in the template’s “(extras.txt)” are released
as well. See Writing with Inform for more.

§19. An optional addition for a website is to incorporate a playable-in-browser form of the story, by base64-
encoding the story file within a Javascript wrapper, then calling an interpreter such as Parchment.
The encoding part is taken care of by:

base64 〈filename〉 to 〈filename〉
This performs an RFC 1113-standard encoding on the binary file in (almost always our story file) into a
textual base-64 file out. The file is topped and tailed with the text in placeholders [BASESIXTYFOURTOP] and
[BASESIXTYFOURTAIL], allowing Javascript wrapper code to surround the encoded data.
The interpreter itself is copied into place in the Release folder in a process rather like the construction of a
website from a template. The necessary blurb command is:

interpreter 〈interpreter-name〉 〈vm-letter〉
Interpreter names are like template names; Inform often uses “Parchment”. The VM letter should be “g” if
we need this to handle a Glulx story file (blorbed up), or “z” if we need it to handle a Z-machine story file.
(This needs to be said because Inform doesn’t have a way of knowing which formats a given interpreter can
handle; so it has to leave checking to cblorb to do. Thus, if an Inform user tries to release a Z-machine-only
interpreter with a Glulx story file, it’s cblorb which issues the error, not Inform itself.)



P/man - The cblorb Manual §20 9

§20. Finally (really finally this time), three commands to do with the “status” page, an HTML page
written by cblorb to report back on what it has done. If requested, this is constructed for reading within the
Inform application – it is not a valid HTML page in other contexts, and expects to have access to Javascript
functions provided by Inform, and so on.

status 〈template〉 〈filename〉
status alternative 〈link to Inform documentation〉
status instruction 〈link to Inform source text〉

The first simply requests the page to be made. It’s made from a single template file, but in exactly the same
way that website pages are generated from website templates – that is, placeholders are expanded. The
second filename is where to write the result.
The other two commands allow Inform to insert information which cblorb otherwise has no access to: options
for fancy release tricks not currently being used (with links to the documentation on them), and links to
source text “Release along with...” sentences.


