
Links and Auxiliary Files 3/links

Purpose
To manage links to auxiliary files, and placeholder variables.

3/links.§1 Registration; §2-3 Linking; §4-5 Links; §6 Cover image; §7 Releasing

Definitions

¶1. Auxiliary files are for items bundled up with the release but which are deliberately made accessible for
the eventual player: things such as maps or manuals. cblorb needs to know about these only when releasing
a website; they are also recorded in an iFiction record, but cblorb does not create that (ni does).

typedef struct auxiliary_file {

char relative_URL[MAX_FILENAME_LENGTH];

char full_filename[MAX_FILENAME_LENGTH];

char aux_leafname[MAX_FILENAME_LENGTH];

char description[MAX_FILENAME_LENGTH];

char format[MAX_EXTENSION_LENGTH]; e.g., “jpg”, “pdf”

MEMORY_MANAGEMENT

} auxiliary_file;

The structure auxiliary file is private to this section.

§1. Registration. The format text is set to a lower-case version of the filename extension, and the URL
to the filename itself; except when there is no extension, so that the auxiliary resource is a mini-website in
a subfolder of the release website. In that case the format is link and the URL is to the index file in the
subfolder.

void create_auxiliary_file(char *filename, char *description) {

auxiliary_file *aux = CREATE(auxiliary_file);

strcpy(aux->description, description);

strcpy(aux->full_filename, filename);

char *ext = get_filename_extension(filename);

char *leaf = get_filename_leafname(filename);

if (ext[0] == ’.’) {

strcpy(aux->relative_URL, filename);

if (strlen(ext + 1) >= MAX_EXTENSION_LENGTH - 1) {

error("auxiliary file has overlong extension"); return;

}

strcpy(aux->format, ext + 1);

int k; for (k=0; aux->format[k]; k++) aux->format[k] = tolower(aux->format[k]);

} else {

strcpy(aux->format, "link");

sprintf(aux->relative_URL, "%s%cindex.html", filename, SEP_CHAR);

}

strcpy(aux->aux_leafname, leaf);

printf("! Auxiliary file: <%s> = <%s>\n", filename, description);

}

The function create auxiliary file is called from 1/blurb.

3/links - Links and Auxiliary Files §2 2

§2. Linking. The list of links to auxiliary resources is written using ... list entry tags, for
convenience of CSS styling.

void expand_AUXILIARY_variable(FILE *COPYTO) {

auxiliary_file *aux;

LOOP_OVER(aux, auxiliary_file) {

fprintf(COPYTO, "");

download_link(COPYTO,

aux->description, aux->full_filename, aux->aux_leafname, aux->format);

fprintf(COPYTO, "");

}

add_links_to_requested_resources(COPYTO);

}

The function expand AUXILIARY variable is.

§3. On some of the pages produced by cblorb the story file itself looks like another auxiliary resource, but
it’s produced thus:

void expand_DOWNLOAD_variable(FILE *COPYTO) {

char target_pathname[MAX_FILENAME_LENGTH]; eventual pathname of Blorb file written

sprintf(target_pathname, "%s%c%s", release_folder, SEP_CHAR, read_placeholder("STORYFILE"));

download_link(COPYTO, "Story File", target_pathname, read_placeholder("STORYFILE"), "Blorb");

}

The function expand DOWNLOAD variable is.

§4. Links. This routine, then, handles either kind of link.

void download_link(FILE *COPYTO, char *desc, char *filename, char *relative_url, char *form) {

int size_up = TRUE;

if (strcmp(form, "link") == 0) size_up = FALSE;

fprintf(COPYTO, "%s ", relative_url, desc);

open_style(COPYTO, "filetype");

fprintf(COPYTO, "(%s", form);

if (size_up) {

long int size = -1L;

if (strcmp(desc, "Story File") == 0) size = (long int) blorb_file_size;

else size = file_size(filename);

if (size != -1L) 〈Write a description of the rough file size 5〉
}

fprintf(COPYTO, ")");

close_style(COPYTO, "filetype");

}

The function download link is called from 3/rel.

3/links - Links and Auxiliary Files §5 3

§5. We round down to the nearest KB, MB, GB, TB or byte, as appropriate. Although this will describe
a 1-byte auxiliary file as “1 bytes”, the contingency seems remote.

〈Write a description of the rough file size 5〉 ≡
char *units = " bytes";

long int remainder = 0;

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "KB"; }

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "MB"; }

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "GB"; }

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "TB"; }

fprintf(COPYTO, ", %d", (int) size);

if ((size < 100L) && (remainder >= 103L)) fprintf(COPYTO, ".%d", (int) (remainder/103L));

fprintf(COPYTO, "%s", units);

This code is used in §4.

§6. Cover image. Note that if the large cover image is a PNG, so is the small (thumbnail) version, and
vice versa – supplying “Cover.jpg” and “Small Cover.png” will not work.

void expand_COVER_variable(FILE *COPYTO) {

if (cover_exists) {

char *format = "png"; if (cover_is_in_JPEG_format) format = "jpg";

fprintf(COPYTO, "",

format, format);

}

}

The function expand COVER variable is.

§7. Releasing. When we generate a website, we need to copy the auxiliary files into it (though not
mini-websites: the user will have to do that).

void request_copy_of_auxiliaries(void) {

auxiliary_file *aux;

LOOP_OVER(aux, auxiliary_file)

if (strcmp(aux->format, "link") != 0) {

if (trace_mode)

printf("! COPY <%s> as <%s>\n", aux->full_filename, aux->aux_leafname);

request_copy(aux->full_filename, aux->aux_leafname);

}

}

The function request copy of auxiliaries is called from 3/rel.

