
PunyInform v3.2 quick reference

Document Release 2. More information on last page.

Library objects

Directions PUNY++

Represents all directions. The selected_direction
variable holds the matched direction (e.g. n_to) or 0.

selfobj

The default player object. It’s better to use the player
variable which normally refers to this.

thedark

A fake room which location points to when it’s dark in
real_location. The player is never moved to
thedark.

Library variables

action

The current action, e.g. ##PutOn.

actor

The creature that is currently being ordered to do
something – usually the player.

buffer

The array where player input is kept.
consult_from

The first word number of a topic in player input.
consult_words

The number of words of a topic in player input.
deadflag

0 = game is on, 1 = player is dead, 2 = player has won,
3+ = game is over - DeathMessage() prints why.

inp1

Usually equals noun, but is 1 if noun is a number.

inp2

Usually equals second, but is 1 if second is a number.

inventory_stage

See invent property.

keep_silent

Set to true to make most group 2 actions silent.

location

The room where the player is, or thedark if it’s dark.

lookmode

1 = normal, 2 = long, 3 = short. Long mode shows the
room description on every visit, short never. 1 is default.
Many games set it to 2 in Initialise.

meta

Is true if action is a meta action, like ##Save.

normal_directions_enabled PUNY++

Is normally true. Set it to false to stop the library from
recognizing the normal directions (N, S, UP, IN etc).

noun

The primary object of the current action, if any.
num_words

The number of words in player input.
parse

The array to keep track of the words in player input.
parser_action

In a parse_name routine, set this to ##PluralFound if
a match was made and it’s in plural form.

player

Points to the object that represents the player.
real_location

The room where the player is, even if it’s dark.
receive_action

The action (##Insert or ##PutOn) that caused the fake
action ##Receive.

scope_modified PUNY++

If OPTIONAL_MANUAL_SCOPE has been defined, set this
to true whenever (possibly) changing what’s in scope.

scope_stage

Used in scope token routines referred to in the grammar.
score

The current score.

second

The secondary object of the current action, if any.
selected_direction PUNY++

The direction matched in input, if any, e.g. n_to.

ship_directions_enabled PUNY++

If OPTIONAL_SHIP_DIRECTIONS is defined, set this to
true/false to turn ship directions, e.g. 'aft', on/off.

task_done

A byte array to note which tasks have been completed.
Achieved updates this. Requires TASKS_PROVIDED.

task_scores

A byte array with scores for tasks. Requires
TASKS_PROVIDED.

the_time

The current time, in minutes past midnight. Only used for
games that show time on the statusline.

turns

The game’s turn counter.
update_moved PUNY++

Set this to true whenever manually moving an object to
the player’s inventory, to ensure the moved attribute is
updated and the score is increased when applicable.

verb_word

The verb in the current input, e.g. 'take'.

wn

Word number in player input where NextWord() will
read, from 1 to (num_words - 1).

Library constants

The Inform language defines true (1), false (0) and
nothing (0). The library also defines NULL (-1), which is
used for an action, property or pronoun which currently
doesn’t have a value. DIRECTION_COUNT holds the
number of directions recognized: Normally 8, but 12 if
OPTIONAL_FULL_DIRECTIONS is defined.
PUNYINFORM_MAJOR_VERSION and
PUNYINFORM_MINOR_VERSION hold the library version.

User-defined constants

AMUSING_PROVIDED

Offer the player to see amusing things to try after they
complete the game. See Amusing entry point routine.

CUSTOM_PLAYER_OBJECT = object PUNY++

The player object to use instead of selfobj.

DEBUG

Use debug mode, with debug verbs and more
information when something goes wrong.

DEFAULT_CAPACITY = number PUNY++

The number of objects that can be held by a container or
supporter that doesn't provide a value for capacity.

Headline = "^text^^"

Information about the game - genre, author, credits etc.
Start with "^", end with "^^", separate sections with "^".

INITIAL_LOCATION_VALUE = object PUNY++

The location in which the player starts. A game must
either define this, or set location in Initialise.

MAX_CARRIED = number

Set the capacity of the player object (default 32).

MAX_FLOATING_OBJECTS = number PUNY++

The maximum number of objects that can have the
found_in property (default 32).

MAX_SCOPE = number PUNY++

The maximum number of objects that can be in scope at
one time (default 32).

MAX_SCORE = number

The maximum score the player can get.
MAX_TIMERS = number

The maximum number of objects which can have an
active timer or daemon at the same time (default 32).

NO_PLACES

Don’t define the verbs 'objects' and 'places'.

NO_SCORE = number PUNY++

Don’t include a scoring mechanism. In z3 games, show
the value of this constant as the score on the statusline.

NUMBER_TASKS = number

The number of scoring tasks (default 1). See
TASKS_PROVIDED.

OBJECT_SCORE = number

The score for each object with the scored attribute the
player picks up (default 4). Requires
OPTIONAL_SCORED.

OPTIONAL_ALLOW_WRITTEN_NUMBERS PUNY++

Allow the player to use 'one' .. 'twenty' as numbers.

OPTIONAL_EXTENDED_METAVERBS PUNY++

Enable a set of nice-to-have metaverbs. See "Group 1
actions" in this document.

OPTIONAL_EXTENDED_VERBSET PUNY++

Enable a set of nice-to-have verbs.See "Group 2 actions"
and "Group 3 actions" in this document.

OPTIONAL_FULL_DIRECTIONS PUNY++

Enable directions NE, NW, SE, SW.
OPTIONAL_FULL_SCORE PUNY++

Enable the 'fullscore' verb, and optionally support
for tasks (See TASKS_PROVIDED).

OPTIONAL_GUESS_MISSING_NOUN PUNY++

Make the parser fill in missing parts in player input.
OPTIONAL_MANUAL_REACTIVE PUNY++

The author takes responsibility for setting the reactive
attribute on the right objects.

OPTIONAL_MANUAL_SCOPE PUNY++

The author takes responsibility for setting
scope_modified = true when doing something in
code which may affect scope.

OPTIONAL_NO_DARKNESS PUNY++

Assume there is always light. Don’t define the light
attribute.

OPTIONAL_ORDERED_TIMERS PUNY++

Timers/daemons are executed in order of their value for
property timer_order.

OPTIONAL_PRINT_SCENERY_CONTENTS PUNY++

Make 'look' describe what’s in/on
containers/supporters which have the scenery attribute.

OPTIONAL_PROVIDE_UNDO PUNY++

Enable the 'undo' verb (z5 & z8 only!)

OPTIONAL_REACTIVE_PARSE_NAME PUNY++

Use the reactive attribute for all objects which have
the parse_name property.

OPTIONAL_SCORED PUNY++

Enable support for the scored attribute.

OPTIONAL_SIMPLE_DOORS PUNY++

Lets you define property door_dir as an array and skip
property door_to for simple two-way doors.

OPTIONAL_SHIP_DIRECTIONS PUNY++

Enable support for 'fore', 'aft' etc. Also see variable
ship_directions_enabled.

OPTIONAL_SL_NO_MOVES PUNY++

Don’t show moves on statusline (z5 & z8 only!).
OPTIONAL_SL_NO_SCORE PUNY++

Don’t show score on statusline (z5 & z8 only!).
ROOM_SCORE = number

The score for each room with the scored attribute the
player visits (default 5). Requires OPTIONAL_SCORED.

RUNTIME_ERRORS = number PUNY++

What to do when a runtime error occurs: 2 = Print error
message, 1 = Print error code, 0 = Like 1 but also reduce
checks for errors (default: 2 if DEBUG is defined, 1 if not)

SACK_OBJECT = object

The object the player will automatically try to put
belongings into when the player's capacity has been
reached.

STATUSLINE_SCORE PUNY++

Show score and moves, not time on the statusline.
STATUSLINE_TIME PUNY++

Show time, not score on the statusline.
Story = "text"

Mandatory: The name of the game.
TASKS_PROVIDED

Use tasks for scoring. Also define NUMBER_TASKS, byte
array task_scores and entry point routine
PrintTaskName.

Library routines

Achieved(number)

Complete scoring task number. Requires
TASKS_PROVIDED.

Banner()

Print the game name, release, serial number etc. If
Initialise returns 2, this information isn't printed at
game start, and you can call Banner later to print it.

CommonAncestor(object1, object2)

Return the nearest object that contains both object1
and object2 on some level, or false.

DrawStatusLine()

Print the statusline, in a z5 or z8 game.
IndirectlyContains(object1, object2)

Return true if object1 holds object2, on some level.

LoopOverScope(routine, actor)

Call routine once for every object in scope for actor
(defaults to player), passing the object as a parameter
to the routine.

MoveFloatingObjects()

Check which objects with found_in should be present.

NextWord()

Read word at position wn in player input and increment
wn. If no word read or word not in dictionary, return false.
Otherwise, return the word.

NextWordStopped()

Like NextWord() except it returns -1 if wn points
beyond the end of player input.

NumberWord(numword)

If numword is a word, e.g. 'six', representing a
number 1-20, return the number. If not, return false.
Requires OPTIONAL_ALLOW_WRITTEN_NUMBERS.

NumberWords()

Return the number of words in player input.
ObjectCapacity(object) PUNY++

Return the object's value for the capacity property,
defaulting to DEFAULT_CAPACITY or 100 if not defined.

ObjectIsUntouchable(object, flag)

Return true if player can't touch object. If so, and
flag is false or unspecified, also print a message.

ParseToken(type, data)

Use in general parsing routines. See DM4 index for
examples.

PlaceInScope(object)

Use in user-supplied scope routines to put object in
scope. Ignores add_to_scope property and children.

PlayerTo(object, flag)

Move player to object, which must be a room or an
enterable object. If flag is 0 or omitted, print a long
room description. If flag is 1, keep quiet. If flag is 2,
print a room description based on the lookmode value.

PrintContents(text, object, flag) PUNY++

Recursively list the contents of object. Hide items that
have concealed or scenery, unless action is
##Inv.. Print or run text before the first item. If flag is
true, only print objects which have the workflag
attribute set. Return true if any objects were listed.

PrintMsg(msg, arg1, arg2) PUNY++

Print library message msg . Some messages need an
argument or two, use arg1 and arg2 for this.

PrintOrRun(object, property, flag)

If object.property holds a routine or list of routines,
run them using RunRoutines(object, property). If
it holds a string, print it and then a newline. If flag is
true, skip the newline.

PronounNotice(object)

Make a pronoun ('it', 'her' etc) refer to object.

RunRoutines(object, property, switch)

If object.property holds a routine or list of routines,
run each routine until one of them returns a non-zero
value. Return the return value of the last routine run.
If switch has a non-zero value, the routines can have
switch-clauses to match this value, otherwise they can
have switch-clauses to match action.

RunTimeError(number) PUNY++

Print a runtime error.

ScopeWithin(object)

Use in user-supplied scope routines. Put all items which
are in object into scope, also recursively searching
supporters, transparent objects and open containers, and
check the add_to_scope property of all objects added.

SetTime(number, step)

Sets the time to number minutes after midnight. If step
is a positive number, one turn takes step minutes.
Otherwise, there are -step turns to a minute.

TestScope(object, actor)

Return true if object is in scope for actor (defaults to
player).

TryNumber(wordnum)

Try to parse word wordnum in player input as a number.
If successful, return the number (0-10000, higher values
are returned as 10000). If it's not a valid number, return
-1000. If OPTIONAL_ALLOW_WRITTEN_NUMBERS is
defined, also parse number words ('one' .. 'twenty').

WordAddress(wordnum)

Return the address in memory where the characters for
word wordnum in player input are stored.

WordLength(wordnum)

Return the number of characters in word wordnum in
player input.

WordValue(wordnum)

Return the dictionary word that word wordnum in player
input matches, or 0 if no match was found.

YesOrNo()

Wait for the player to type something. Return true if
they typed yes, false if they typed no, or ask again.

Printing rules

A printing rule is used to print something based on one
argument, typically an object. Example of use:
print "The pump is ", (OnOff) Pump, ".^";

CObjIs PUNY++

Prints "The (object) ", and "is" or "are" (see IsOrAre).

CTheyreorThats

Prints "That's" or "They're" or "He's" etc.
IsOrAre

Prints "is" or "are", based on pluralname and if the
object is the player object.

ItorThem

Prints "it", "them", "her" etc.
OnOff PUNY++

Prints "on" or "off", based on on.

ThatOrThose

Prints "that" or "those" based on pluralname.

Entry point routines

These routines, if defined by the game author, are run
under the circumstances stated for each routine.

AfterLife()

When player has died. Can be used to revive player.
AfterPrompt()

After the input prompt has been printed.
Amusing()

When the player has won. Use it to print fun facts about
the game. Requires AMUSING_PROVIDED.

BeforeParsing()

After player input, before parsing starts.
DarkToDark()

When player moves from one dark location to another.
DeathMessage()

When game ends and deadflag is set to 3 or higher.
Should print a few words to say why the game ended.

DebugParseNameObject(object) PUNY++

When the parser checks for matching objects for a debug
verb like 'purloin'. Return true if object has a
parse_name routine.

DisallowTakeAnimate() PUNY++

When the player tries to take noun, which has animate.
Return false to allow this, or true to disallow it.

GamePostRoutine()

When after routines have been run.

GamePreRoutine()

Before before routines have been run.

InScope(actor)

When working out the scope for the actor. Call
ScopeWithin and PlaceInScope to add objects to
scope. Return true if no other objects should be in scope.

Initialise ~PUNY

Mandatory: A (possibly empty) routine which is called
when the game starts. May print an introduction. May
return 2 to skip the game banner. Must set location,
unless INITIAL_LOCATION_VALUE is defined.

LibraryMessages(number, arg1, arg2) PUNY++

When a library message is about to be printed. Use it to
print your own complex library messages.

LookRoutine

After the room and everything in it has been described.
NewRoom

When the player has entered a new room, before the
room is described.

ParseNoun(object) ~PUNY

When checking if input matches object, before
parse_name and name properties are checked. Can
advance wn and return -1 to consume words
(parse_name + name will also be checked), just return
-1 to not interfere, or return how many words matched.

ParseNumber(buffer, length)

When the parser needs to check if the input word that
starts at buffer and is length bytes long, is a number.
Return the number, or false if no number was found.

PrintRank()

When the scoring message is printed. Prints the final
part, typically giving the player a rank based on score.

PrintTaskName(n)

When listing a completed task. Print name of task n.

PrintVerb(verb)

When the parser needs to print a verb. Typically needed
for long verbs. Return true if the routine printed the verb.

TimePasses()

After a game turn has ended, in which turns increased.

UnknownVerb(word)

When the parser doesn’t recognize the verb. Return a
dictionary word to use as the verb instead, or false.

Fake actions

These actions are not referred to anywhere in the
grammar, and they don’t have action routines, e.g. the fake
action Going has no action routine GoingSub.

Going Sent to the before routine for the room
that the player is about to enter.

LetGo Sent to the container/supporter from
which the player takes something.

NotUnderstoodSent to creature's orders when player
issued an incomprehensible order to it.

Order Sent to creature's life when player
issued an order to it, and orders didn't
handle it.

PluralFound A parse_name routine can set
parser_action to this value when a
match is found and it’s in plural.

Receive Sent to the object the player tries to place
something in/on. receive_action
holds the original action.

ThrownAt Sent by action ThrowAt to the object the
player tries to throw something at.

Group 1 actions

Group 1 actions are metaverbs that control gameplay, and
debug verbs. They don’t run before or after routines.

Again, FullScore, LookModeLong,
LookModeNormal, LookModeShort, NotifyOff,
NotifyOn, Oops, OopsCorrection, Restart,
Restore, Save, Score, Version, Quit

OPTIONAL_EXTENDED_METAVERBS adds:
CommandsOff, CommandsOn, CommandsRead,
Objects, Places, ScriptOff, ScriptOn,
Verify

DEBUG adds: ActionsOff, ActionsOn, Debug,
GoNear, Pronouns, RandomSeed, RoutinesOff,
RoutinesOn, Scope, Purloin, TimersOff,
TimersOn, Tree

Group 2 actions

These are actions which the library knows how to perform.
They change something in the game world or prints
important information about it. They run both before and
after routines.

Close "CLOSE (noun)"
Disrobe "TAKE OFF (noun)"
Drop "DROP (noun)"
Eat "EAT (noun)"
Enter "ENTER (noun)"
Examine "EXAMINE (noun)"
Exit "EXIT (noun)"
GetOff "GET OFF (noun)"
Go "GO (direction)"
Insert "INSERT (noun) INTO (second)"
Inv "INVENTORY"
Lock "LOCK (noun) with (second)"
Look "LOOK"
Open "OPEN (noun)"
PutOn "PUT (noun) ON (second)"
Remove "REMOVE (noun) FROM (second)"

Search "SEARCH (noun)"
SwitchOff "SWITCH OFF (noun)"
SwitchOn "SWITCH ON (noun)"
Take "TAKE (noun)"
Transfer "TRANSFER (noun) TO (second)"
Unlock "UNLOCK (noun) WITH (second)"
Wait "WAIT"
Wear "WEAR (noun)"

OPTIONAL_EXTENDED_VERBSET adds:

Empty "EMPTY (noun)"
EmptyT "EMPTY (noun) INTO (second)"
GoIn "INSIDE"

Group 3 actions

These actions normally don’t do anything, except print a
standard message. They run before routines but not
after routines.

Answer "ANSWER (topic) TO (second)"
Ask "ASK (noun) ABOUT (topic)"
AskFor "ASK (noun) FOR (second)"
AskTo "ASK (noun) TO (topic)"
Attack "ATTACK (noun)"
Climb "CLIMB (noun)"
Consult "CONSULT (noun) ABOUT (topic)"
Cut "CUT (noun)"
Dig "DIG (noun)"
Drink "DRINK (noun)"
Fill "FILL (noun)"
Give "GIVE (noun) to (second)"
Jump "JUMP"
JumpOver "JUMP OVER (noun)"
Listen "LISTEN TO (noun)"
Pull "PULL (noun)"
Push "PUSH (noun)"
PushDir "PUSH (noun) (direction)"
Rub "RUB (noun)"
Shout "SHOUT (topic)"
ShoutAt "SHOUT (topic) AT (second)"

Show "SHOW (noun) (second)"
Smell "SMELL (noun)"
Tell "TELL (noun) ABOUT (topic)"
ThrowAt "THROW (noun) AT (second)"
Tie "TIE (noun) TO (second)"
Touch "TOUCH (noun)"
Turn "TURN (noun)"

OPTIONAL_EXTENDED_VERBSET adds:

Blow "BLOW (noun)"
Mild "DARN"
Burn "BURN (noun)"
Buy "BUY (noun)"
Kiss "KISS (noun)"
No "NO"
Set "SET (noun)"
SetTo "SET (noun) TO (special)"
Strong "SHIT"
Sing "SING"
Sleep "SLEEP"
Sorry "SORRY"
Squeeze "SQUEEZE (noun)"
Swim "SWIM"
Swing "SWING (noun)"
Taste "TASTE (noun)"
Think "THINK"
Transfer "TRANSFER (noun) TO (second)"
Wake "WAKE UP"
WakeOther "WAKE UP (noun)"
Wave "WAVE"
Yes "YES"

Object attributes (flags)

An attribute is a flag which can be on or off.
[OBJ]means this is used for regular objects.
[ROOM] means this is used for rooms.

absent [OBJ]

For object with found_in: Removed from game for now.

animate [OBJ]

Is a living thing, can be talked to etc.
clothing [OBJ]

Can be worn.
concealed [OBJ]

Is visible but not easy to spot, like a secret door. Can be
interacted with but is not printed in room description.

container [OBJ]

Objects can be put in it and removed from it, if it's open.
Can't also have supporter. Can have enterable.

door [OBJ]

Is a portal between rooms. Use properties door_to,
door_dir and, unless it's a one-way door, found_in.

edible [OBJ]

Can be eaten.
enterable [OBJ]

Can be entered. Must have container or supporter.

female [OBJ]

Can be referred to as she/her. Must have animate.

general [OBJ] [ROOM]

To be used by the game author for whatever they like.
light [OBJ] [ROOM]

Provides light. For room and container, lights up what's
inside as well. Note: This attribute is not defined if
OPTIONAL_NO_DARKNESS is defined.

lockable [OBJ]

Can be locked and unlocked, using the object specified
by with_key property.

locked [OBJ]

Can't be opened.

moved [OBJ]

Is or has been held directly by the player.
neuter [OBJ]

Can be referred to as "it" (Mainly used for animate
objects, as this is default behaviour for non-animates).

on [OBJ]

Is currently switched on. See switchable attribute.

open [OBJ]

For doors and containers: Is currently open.
openable [OBJ]

For doors and containers: Can be opened and closed.
pluralname [OBJ]

Can be referred to as they/them.
proper [OBJ]

Has a name which should never be preceded by an
article, like "John".

reactive [OBJ] [ROOM] PUNY++

The object provides at least one of add_to_scope,
each_turn, react_before, react_after (+
parse_name if OPTIONAL_REACTIVE_PARSE_NAME is
defined). Note: unless OPTIONAL_MANUAL_REACTIVE
is defined, the reactive attribute is set automatically.

scenery [OBJ]

Can't be taken, is not mentioned in room descriptions.
scored [OBJ] [ROOM]

For an object: awards OBJECT_SCORE points when
taken for the first time. For a room: awards ROOM_SCORE
points when visited for the first time. Note: Only defined if
OPTIONAL_SCORED is defined and NO_SCORE is not.

static [OBJ]

Can't be taken.
supporter [OBJ]

Is a supporter, meaning things can be placed on top of it.
Can't also have container. Can have enterable.

switchable [OBJ]

Can be switched on and off. The on attribute tells its
current state.

talkable [OBJ]

Can be talked to, even though it's not animate.

transparent [OBJ]

For a container: The contents are visible even if the
container is closed. For an animate object: Held objects
are visible to others. For other objects: Objects that are
part of this objects (i.e. are inside this object) are visible.

visited [ROOM]

The player has seen this room.
workflag [OBJ] [ROOM]

Temporary internal flag. Can be used by game code too.
worn [OBJ]

For object that has clothing: Is currently being worn.

Object properties

A property is a 16-bit value or a list of values.
[OBJ] means this is used for regular objects.
[ROOM] means this is used for rooms.
(+) means "additive" - if an object which defines the
property inherits from a class which also defines the
property, it gets both values.

add_to_scope [OBJ]

A list of objects that should be added to scope when this
object is in scope, or a routine which puts objects in
scope using ScopeWithin and PlaceInScope.

after [OBJ] [ROOM] (+)

For an object: Receives every action and fake action for
which this is the noun.
For a room: Receives every action which occurs here.
The property value is a routine, which usually has
sections like switch-clauses, each listing one or more
actions, a colon and the code to run. There can be a
default clause which runs if nothing else was matched.
There can also be code before the first clause, which will
run regardless of action. The routine should return false
to continue, telling the player what has happened, or true
to stop processing the action and produce no further
output.

article [OBJ] ~PUNY

A string or a routine to print the indefinite article for the
object name.The default article is "some" for objects that
have pluralname, nothing for objects that have
proper, and "a" for all others.

before [OBJ] [ROOM] (+)

Like after, but is run before the action happens.
Returning true stops the default action from happening at
all.

cant_go [ROOM]

A string or a routine to print a message, when the player
tries to go in a direction where there's no exit.

capacity [OBJ] ~PUNY

The maximum number of items that can be in this
container, on this supporter or held by this actor. To read
the capacity of an object, taking the default capacity into

consideration, you must call
ObjectCapacity(object).

d_to [ROOM]

Holds a possible exit. The value can be any of:
* false – not an exit
* a room where the exits leads
* a door object – the exit leads through this door
* a string saying why the player can’t go there
* a routine which either returns false, a room, a door
object, or prints its own message and returns true.

daemon [OBJ] [ROOM]

A routine that is executed every turn once it is started.
Use StartDaemon and StopDaemon to start/stop it.

describe [OBJ] (+) ~PUNY

A string or a routine to print a paragraph of text for an
object in a room description. If it's a string or it's a routine
which returns true, the object won't be further
described. Not supported for rooms as in DM4. Note:
Start and end the description with a newline ("^").

description [OBJ] [ROOM]

For an object: A string or a routine to print the text the
player should get when examining the object.
For a room: A string or a routine to print the room
description.

door_dir [OBJ] ~PUNY

For a door: A direction (e.g. n_to) or a routine returning
a direction. This says in which direction the door lies in
location. If OPTIONAL_SIMPLE_DOORS is defined and
found_in holds a list with two rooms, door_dir can be
a list of two directions.

door_to [OBJ] ~PUNY

For a door: A room or a routine returning a room. This
says where the door leads, when the player is in
location. If OPTIONAL_SIMPLE_DOORS is defined and
found_in holds a list with two rooms, door_to can be
omitted.

e_to [ROOM]

An exit property. See d_to.

each_turn [OBJ] [ROOM] (+)

A routine which is executed every turn when the object is
in scope.

found_in [OBJ]

A list of rooms where the object is present, or a routine
which returns true if the object is present in location.
If the object has absent, it's not present anywhere.

grammar [OBJ]

For animate or talkable objects: Called when object
is spoken to. Can advance verb_wordnum. Return
true if routine has parsed all input and set up action,
noun and second. Return 'verb' to use this verb's
grammar instead, or -'verb' to use this verb's grammar
but fall back to the verb in player input if parsing fails.
Return false to parse as usual.

in_to [ROOM]

An exit property. See d_to.

initial [OBJ] [ROOM]

For an object: A string or a routine to describe the object
before it's been picked up. Note: For doors/containers
and switchable objects, use when_open +
when_closed and when_on + when_off respectively.
For a room: A string or a routine to print a text when the
player enters the room.

inside_description [OBJ]

For an enterable object: A string or a routine that will
printed/run when the player is in/on the object.

invent [OBJ]

A routine to print the object in a list (typically in player
inventory or a room description). First the routine is
called before the object name has been printed, with
inventory_stage set to 1. Then it's called again when
the object name has been printed but no additional
information (e.g. "(providing light)"), with
inventory_stage set to 2.
For both calls, the routine should return false to
continue or true to stop all further output.

life [OBJ] (+)

For animate objects: Works like a before routine, but
receives only person-to-person actions (Answer, Ask,
Attack, Give, Kiss, Order, Show, Tell, ThrowAt,
WakeOther). Can be a string instead of a routine.

n_to [ROOM]

An exit property. See d_to.

name [OBJ] [ROOM]

A list of dictionary words. For an object, these are the
words that can be used to refer to the object. For a room,
these are words which should yield a reply like "You don't
need to refer to that.". For an object, but not a room, the
name property can be overridden by the parse_name
property.

ne_to [ROOM]

An exit property. See d_to. Requires
OPTIONAL_FULL_DIRECTIONS to work.

nw_to [ROOM]

An exit property. See d_to. Requires
OPTIONAL_FULL_DIRECTIONS to work.

orders [OBJ]

For animate or talkable objects: A routine to carry out
the player's orders or decline to do so. The routine
should either return false, or print a message and
return true to stop further processing. The player
object's orders routine is called first, and then the
addressed object's orders routine is called.

out_to [ROOM]

An exit property. See d_to.

parse_name [OBJ]

A routine to parse player input and decide if it matches
this object. The routine calls NextWord() and/or
NextWordStopped() to read words and returns the
number of words that match, 0 for no match or -1 to say
it chooses not to decide (i.e. the name property will be
consulted, if provided).

react_after [OBJ]

Like after, but receives all actions taking place when
this object is in scope.

react_before [OBJ]

Like before, but receives all actions taking place when
this object is in scope.

s_to [ROOM]

An exit property. See d_to.

se_to [ROOM]

An exit property. See d_to. Requires
OPTIONAL_FULL_DIRECTIONS to work.

short_name [OBJ]

A string or routine to print the short name of the object,
overriding the name provided in the object's name string.
The routine should return true to signal that it has
printed the name, or false to say that the library should
still print the object's name string. Sometimes it's useful
to print a prefix (e.g. an adjective) and return false.

sw_to [ROOM]

An exit property. See d_to. Requires
OPTIONAL_FULL_DIRECTIONS to work.

time_left [OBJ] [ROOM]

For an object which has a time_out property: After
StartTimer(object, turns) has been called,
time_left holds the number of turns left before
time_out will be called.
For other objects/rooms: Use it as a general variable.

time_out [OBJ] [ROOM] (+)

A routine to be called when a timer times out. Start the
countdown with StartTimer(object, turns).

timer_order [OBJ] [ROOM] PUNY++

A number that determines when this object’s
timer/daemon executes relative to other
timers/daemons. The lower the earlier. Objects that don’t
provide it have the value 100. Requires
OPTIONAL_ORDERED_TIMERS.

u_to [ROOM]

An exit property. See d_to.

w_to [ROOM]

An exit property. See d_to.

when_closed [OBJ]

For doors and containers: A string or routine to describe
the object when it's closed.

when_off [OBJ]

For a switchable object: A string or routine to describe
the object when it's off.

when_on [OBJ]

Like when_off, but for when it's on. Not used if the
object has moved.

when_open [OBJ]

Like when_closed, but for when it's open. Not used if
the object has moved.

with_key [OBJ] ~PUNY

For lockable objects: The object which works as a key,
or a routine which returns true if the object held in
second works as a key.

About this document

This is meant to be printed out and serve as a quick index
to all the functionality that the PunyInform library provides.
A similar document for the Inform 6 language is Inform in
Four Minutes, available at http://www.firthworks.com/roger/

This is not meant to be a document from which to learn
PunyInform, a replacement for The Inform Designer's
Manual, Fourth Edition (DM4) or the PunyInform manual
and tutorials. To keep it short, this document leaves out
finer details. Always consult DM4 and/or the PunyInform
manual to get the full picture (See Legend below).

Created and maintained by Fredrik Ramsberg.
Improvement suggestions by Garry Francis, Johan
Berntsson and Nick Moffitt.

Based on InfoLib at Your Fingertips by Roger Firth.

Legend

Items marked PUNY++ aren't described in DM4. Items
marked ~PUNY don't work exactly as described in DM4.
See PunyInform manual for details on these items.

	Library objects
	Directions PUNY++
	Represents all directions. The selected_direction variable holds the matched direction (e.g. n_to) or 0.

	selfobj
	The default player object. It’s better to use the player variable which normally refers to this.

	thedark
	A fake room which location points to when it’s dark in real_location. The player is never moved to thedark.

	Library variables
	action
	The current action, e.g. ##PutOn.

	actor
	The creature that is currently being ordered to do something – usually the player.

	buffer
	The array where player input is kept.

	consult_from
	The first word number of a topic in player input.

	consult_words
	The number of words of a topic in player input.

	deadflag
	0 = game is on, 1 = player is dead, 2 = player has won, 3+ = game is over - DeathMessage() prints why.

	inp1
	Usually equals noun, but is 1 if noun is a number.

	inp2
	Usually equals second, but is 1 if second is a number.

	inventory_stage
	See invent property.

	keep_silent
	Set to true to make most group 2 actions silent.

	location
	The room where the player is, or thedark if it’s dark.

	lookmode
	1 = normal, 2 = long, 3 = short. Long mode shows the room description on every visit, short never. 1 is default. Many games set it to 2 in Initialise.

	meta
	Is true if action is a meta action, like ##Save.

	normal_directions_enabled PUNY++
	Is normally true. Set it to false to stop the library from recognizing the normal directions (N, S, UP, IN etc).

	noun
	The primary object of the current action, if any.

	num_words
	The number of words in player input.

	parse
	The array to keep track of the words in player input.

	parser_action
	In a parse_name routine, set this to ##PluralFound if a match was made and it’s in plural form.

	player
	Points to the object that represents the player.

	real_location
	The room where the player is, even if it’s dark.

	receive_action
	The action (##Insert or ##PutOn) that caused the fake action ##Receive.

	scope_modified PUNY++
	If OPTIONAL_MANUAL_SCOPE has been defined, set this to true whenever (possibly) changing what’s in scope.

	scope_stage
	Used in scope token routines referred to in the grammar.

	score
	The current score.

	second
	The secondary object of the current action, if any.

	selected_direction PUNY++
	The direction matched in input, if any, e.g. n_to.

	ship_directions_enabled PUNY++
	If OPTIONAL_SHIP_DIRECTIONS is defined, set this to true/false to turn ship directions, e.g. 'aft', on/off.

	task_done
	A byte array to note which tasks have been completed. Achieved updates this. Requires TASKS_PROVIDED.

	task_scores
	A byte array with scores for tasks. Requires TASKS_PROVIDED.

	the_time
	The current time, in minutes past midnight. Only used for games that show time on the statusline.

	turns
	The game’s turn counter.

	update_moved PUNY++
	Set this to true whenever manually moving an object to the player’s inventory, to ensure the moved attribute is updated and the score is increased when applicable.

	verb_word
	The verb in the current input, e.g. 'take'.

	wn
	Word number in player input where NextWord() will read, from 1 to (num_words - 1).

	Library constants
	The Inform language defines true (1), false (0) and nothing (0). The library also defines NULL (-1), which is used for an action, property or pronoun which currently doesn’t have a value. DIRECTION_COUNT holds the number of directions recognized: Normally 8, but 12 if OPTIONAL_FULL_DIRECTIONS is defined. PUNYINFORM_MAJOR_VERSION and PUNYINFORM_MINOR_VERSION hold the library version.

	User-defined constants
	AMUSING_PROVIDED
	Offer the player to see amusing things to try after they complete the game. See Amusing entry point routine.

	CUSTOM_PLAYER_OBJECT = object PUNY++
	The player object to use instead of selfobj.

	DEBUG
	Use debug mode, with debug verbs and more information when something goes wrong.

	DEFAULT_CAPACITY = number PUNY++
	The number of objects that can be held by a container or supporter that doesn't provide a value for capacity.

	Headline = "^text^^"
	Information about the game - genre, author, credits etc. Start with "^", end with "^^", separate sections with "^".

	INITIAL_LOCATION_VALUE = object PUNY++
	The location in which the player starts. A game must either define this, or set location in Initialise.

	MAX_CARRIED = number
	Set the capacity of the player object (default 32).

	MAX_FLOATING_OBJECTS = number PUNY++
	The maximum number of objects that can have the found_in property (default 32).

	MAX_SCOPE = number PUNY++
	The maximum number of objects that can be in scope at one time (default 32).

	MAX_SCORE = number
	The maximum score the player can get.

	MAX_TIMERS = number
	The maximum number of objects which can have an active timer or daemon at the same time (default 32).

	NO_PLACES
	Don’t define the verbs 'objects' and 'places'.

	NO_SCORE = number PUNY++
	Don’t include a scoring mechanism. In z3 games, show the value of this constant as the score on the statusline.

	NUMBER_TASKS = number
	The number of scoring tasks (default 1). See TASKS_PROVIDED.

	OBJECT_SCORE = number
	The score for each object with the scored attribute the player picks up (default 4). Requires OPTIONAL_SCORED.

	OPTIONAL_ALLOW_WRITTEN_NUMBERS PUNY++
	Allow the player to use 'one' .. 'twenty' as numbers.

	OPTIONAL_EXTENDED_METAVERBS PUNY++
	Enable a set of nice-to-have metaverbs. See "Group 1 actions" in this document.

	OPTIONAL_EXTENDED_VERBSET PUNY++
	Enable a set of nice-to-have verbs.See "Group 2 actions" and "Group 3 actions" in this document.

	OPTIONAL_FULL_DIRECTIONS PUNY++
	Enable directions NE, NW, SE, SW.

	OPTIONAL_FULL_SCORE PUNY++
	Enable the 'fullscore' verb, and optionally support for tasks (See TASKS_PROVIDED).

	OPTIONAL_GUESS_MISSING_NOUN PUNY++
	Make the parser fill in missing parts in player input.

	OPTIONAL_MANUAL_REACTIVE PUNY++
	The author takes responsibility for setting the reactive attribute on the right objects.

	OPTIONAL_MANUAL_SCOPE PUNY++
	The author takes responsibility for setting scope_modified = true when doing something in code which may affect scope.

	OPTIONAL_NO_DARKNESS PUNY++
	Assume there is always light. Don’t define the light attribute.

	OPTIONAL_ORDERED_TIMERS PUNY++
	Timers/daemons are executed in order of their value for property timer_order.

	OPTIONAL_PRINT_SCENERY_CONTENTS PUNY++
	Make 'look' describe what’s in/on containers/supporters which have the scenery attribute.

	OPTIONAL_PROVIDE_UNDO PUNY++
	Enable the 'undo' verb (z5 & z8 only!)

	OPTIONAL_REACTIVE_PARSE_NAME PUNY++
	Use the reactive attribute for all objects which have the parse_name property.

	OPTIONAL_SCORED PUNY++
	Enable support for the scored attribute.

	OPTIONAL_SIMPLE_DOORS PUNY++
	Lets you define property door_dir as an array and skip property door_to for simple two-way doors.

	OPTIONAL_SHIP_DIRECTIONS PUNY++
	Enable support for 'fore', 'aft' etc. Also see variable ship_directions_enabled.

	OPTIONAL_SL_NO_MOVES PUNY++
	Don’t show moves on statusline (z5 & z8 only!).

	OPTIONAL_SL_NO_SCORE PUNY++
	Don’t show score on statusline (z5 & z8 only!).

	ROOM_SCORE = number
	The score for each room with the scored attribute the player visits (default 5). Requires OPTIONAL_SCORED.

	RUNTIME_ERRORS = number PUNY++
	What to do when a runtime error occurs: 2 = Print error message, 1 = Print error code, 0 = Like 1 but also reduce checks for errors (default: 2 if DEBUG is defined, 1 if not)

	SACK_OBJECT = object
	The object the player will automatically try to put belongings into when the player's capacity has been reached.

	STATUSLINE_SCORE PUNY++
	Show score and moves, not time on the statusline.

	STATUSLINE_TIME PUNY++
	Show time, not score on the statusline.

	Story = "text"
	Mandatory: The name of the game.

	TASKS_PROVIDED
	Use tasks for scoring. Also define NUMBER_TASKS, byte array task_scores and entry point routine PrintTaskName.

	Library routines
	Achieved(number)
	Complete scoring task number. Requires TASKS_PROVIDED.

	Banner()
	Print the game name, release, serial number etc. If Initialise returns 2, this information isn't printed at game start, and you can call Banner later to print it.

	CommonAncestor(object1, object2)
	Return the nearest object that contains both object1 and object2 on some level, or false.

	DrawStatusLine()
	Print the statusline, in a z5 or z8 game.

	IndirectlyContains(object1, object2)
	Return true if object1 holds object2, on some level.

	LoopOverScope(routine, actor)
	Call routine once for every object in scope for actor (defaults to player), passing the object as a parameter to the routine.

	MoveFloatingObjects()
	Check which objects with found_in should be present.

	NextWord()
	Read word at position wn in player input and increment wn. If no word read or word not in dictionary, return false. Otherwise, return the word.

	NextWordStopped()
	Like NextWord() except it returns -1 if wn points beyond the end of player input.

	NumberWord(numword)
	If numword is a word, e.g. 'six', representing a number 1-20, return the number. If not, return false. Requires OPTIONAL_ALLOW_WRITTEN_NUMBERS.

	NumberWords()
	Return the number of words in player input.

	ObjectCapacity(object) PUNY++
	Return the object's value for the capacity property, defaulting to DEFAULT_CAPACITY or 100 if not defined.

	ObjectIsUntouchable(object, flag)
	Return true if player can't touch object. If so, and flag is false or unspecified, also print a message.

	ParseToken(type, data)
	Use in general parsing routines. See DM4 index for examples.

	PlaceInScope(object)
	Use in user-supplied scope routines to put object in scope. Ignores add_to_scope property and children.

	PlayerTo(object, flag)
	Move player to object, which must be a room or an enterable object. If flag is 0 or omitted, print a long room description. If flag is 1, keep quiet. If flag is 2, print a room description based on the lookmode value.

	PrintContents(text, object, flag) PUNY++
	Recursively list the contents of object. Hide items that have concealed or scenery, unless action is ##Inv.. Print or run text before the first item. If flag is true, only print objects which have the workflag attribute set. Return true if any objects were listed.

	PrintMsg(msg, arg1, arg2) PUNY++
	Print library message msg . Some messages need an argument or two, use arg1 and arg2 for this.

	PrintOrRun(object, property, flag)
	If object.property holds a routine or list of routines, run them using RunRoutines(object, property). If it holds a string, print it and then a newline. If flag is true, skip the newline.

	PronounNotice(object)
	Make a pronoun ('it', 'her' etc) refer to object.

	RunRoutines(object, property, switch)
	If object.property holds a routine or list of routines, run each routine until one of them returns a non-zero value. Return the return value of the last routine run. If switch has a non-zero value, the routines can have switch-clauses to match this value, otherwise they can have switch-clauses to match action.

	RunTimeError(number) PUNY++
	Print a runtime error.

	ScopeWithin(object)
	Use in user-supplied scope routines. Put all items which are in object into scope, also recursively searching supporters, transparent objects and open containers, and check the add_to_scope property of all objects added.

	SetTime(number, step)
	Sets the time to number minutes after midnight. If step is a positive number, one turn takes step minutes. Otherwise, there are -step turns to a minute.

	TestScope(object, actor)
	Return true if object is in scope for actor (defaults to player).

	TryNumber(wordnum)
	Try to parse word wordnum in player input as a number. If successful, return the number (0-10000, higher values are returned as 10000). If it's not a valid number, return
-1000. If OPTIONAL_ALLOW_WRITTEN_NUMBERS is defined, also parse number words ('one' .. 'twenty').

	WordAddress(wordnum)
	Return the address in memory where the characters for word wordnum in player input are stored.

	WordLength(wordnum)
	Return the number of characters in word wordnum in player input.

	WordValue(wordnum)
	Return the dictionary word that word wordnum in player input matches, or 0 if no match was found.

	YesOrNo()
	Wait for the player to type something. Return true if they typed yes, false if they typed no, or ask again.

	Printing rules
	CObjIs PUNY++
	Prints "The (object) ", and "is" or "are" (see IsOrAre).

	CTheyreorThats
	Prints "That's" or "They're" or "He's" etc.

	IsOrAre
	Prints "is" or "are", based on pluralname and if the object is the player object.

	ItorThem
	Prints "it", "them", "her" etc.

	OnOff PUNY++
	Prints "on" or "off", based on on.

	ThatOrThose
	Prints "that" or "those" based on pluralname.

	Entry point routines
	AfterLife()
	When player has died. Can be used to revive player.

	AfterPrompt()
	After the input prompt has been printed.

	Amusing()
	When the player has won. Use it to print fun facts about the game. Requires AMUSING_PROVIDED.

	BeforeParsing()
	After player input, before parsing starts.

	DarkToDark()
	When player moves from one dark location to another.

	DeathMessage()
	When game ends and deadflag is set to 3 or higher. Should print a few words to say why the game ended.

	DebugParseNameObject(object) PUNY++
	When the parser checks for matching objects for a debug verb like 'purloin'. Return true if object has a parse_name routine.

	DisallowTakeAnimate() PUNY++
	When the player tries to take noun, which has animate. Return false to allow this, or true to disallow it.

	GamePostRoutine()
	When after routines have been run.

	GamePreRoutine()
	Before before routines have been run.

	InScope(actor)
	When working out the scope for the actor. Call ScopeWithin and PlaceInScope to add objects to scope. Return true if no other objects should be in scope.

	Initialise ~PUNY
	Mandatory: A (possibly empty) routine which is called when the game starts. May print an introduction. May return 2 to skip the game banner. Must set location, unless INITIAL_LOCATION_VALUE is defined.

	LibraryMessages(number, arg1, arg2) PUNY++
	When a library message is about to be printed. Use it to print your own complex library messages.

	LookRoutine
	After the room and everything in it has been described.

	NewRoom
	When the player has entered a new room, before the room is described.

	ParseNoun(object) ~PUNY
	When checking if input matches object, before parse_name and name properties are checked. Can advance wn and return -1 to consume words (parse_name + name will also be checked), just return -1 to not interfere, or return how many words matched.

	ParseNumber(buffer, length)
	When the parser needs to check if the input word that starts at buffer and is length bytes long, is a number. Return the number, or false if no number was found.

	PrintRank()
	When the scoring message is printed. Prints the final part, typically giving the player a rank based on score.

	PrintTaskName(n)
	When listing a completed task. Print name of task n.

	PrintVerb(verb)
	When the parser needs to print a verb. Typically needed for long verbs. Return true if the routine printed the verb.

	TimePasses()
	After a game turn has ended, in which turns increased.

	UnknownVerb(word)
	When the parser doesn’t recognize the verb. Return a dictionary word to use as the verb instead, or false.

	Fake actions
	Group 1 actions
	Group 2 actions
	Group 3 actions
	Object attributes (flags)
	absent [OBJ]
	For object with found_in: Removed from game for now.

	animate [OBJ]
	Is a living thing, can be talked to etc.

	clothing [OBJ]
	Can be worn.

	concealed [OBJ]
	Is visible but not easy to spot, like a secret door. Can be interacted with but is not printed in room description.

	container [OBJ]
	Objects can be put in it and removed from it, if it's open. Can't also have supporter. Can have enterable.

	door [OBJ]
	Is a portal between rooms. Use properties door_to, door_dir and, unless it's a one-way door, found_in.

	edible [OBJ]
	Can be eaten.

	enterable [OBJ]
	Can be entered. Must have container or supporter.

	female [OBJ]
	Can be referred to as she/her. Must have animate.

	general [OBJ] [ROOM]
	To be used by the game author for whatever they like.

	light [OBJ] [ROOM]
	Provides light. For room and container, lights up what's inside as well. Note: This attribute is not defined if OPTIONAL_NO_DARKNESS is defined.

	lockable [OBJ]
	Can be locked and unlocked, using the object specified by with_key property.

	locked [OBJ]
	Can't be opened.

	moved [OBJ]
	Is or has been held directly by the player.

	neuter [OBJ]
	Can be referred to as "it" (Mainly used for animate objects, as this is default behaviour for non-animates).

	on [OBJ]
	Is currently switched on. See switchable attribute.

	open [OBJ]
	For doors and containers: Is currently open.

	openable [OBJ]
	For doors and containers: Can be opened and closed.

	pluralname [OBJ]
	Can be referred to as they/them.

	proper [OBJ]
	Has a name which should never be preceded by an article, like "John".

	reactive [OBJ] [ROOM] PUNY++
	The object provides at least one of add_to_scope, each_turn, react_before, react_after (+ parse_name if OPTIONAL_REACTIVE_PARSE_NAME is defined). Note: unless OPTIONAL_MANUAL_REACTIVE is defined, the reactive attribute is set automatically.

	scenery [OBJ]
	Can't be taken, is not mentioned in room descriptions.

	scored [OBJ] [ROOM]
	For an object: awards OBJECT_SCORE points when taken for the first time. For a room: awards ROOM_SCORE points when visited for the first time. Note: Only defined if OPTIONAL_SCORED is defined and NO_SCORE is not.

	static [OBJ]
	Can't be taken.

	supporter [OBJ]
	Is a supporter, meaning things can be placed on top of it. Can't also have container. Can have enterable.

	switchable [OBJ]
	Can be switched on and off. The on attribute tells its current state.

	talkable [OBJ]
	Can be talked to, even though it's not animate.

	transparent [OBJ]
	For a container: The contents are visible even if the container is closed. For an animate object: Held objects are visible to others. For other objects: Objects that are part of this objects (i.e. are inside this object) are visible.

	visited [ROOM]
	The player has seen this room.

	workflag [OBJ] [ROOM]
	Temporary internal flag. Can be used by game code too.

	worn [OBJ]
	For object that has clothing: Is currently being worn.

	Object properties
	add_to_scope [OBJ]
	A list of objects that should be added to scope when this object is in scope, or a routine which puts objects in scope using ScopeWithin and PlaceInScope.

	after [OBJ] [ROOM] (+)
	For an object: Receives every action and fake action for which this is the noun. For a room: Receives every action which occurs here. The property value is a routine, which usually has sections like switch-clauses, each listing one or more actions, a colon and the code to run. There can be a default clause which runs if nothing else was matched. There can also be code before the first clause, which will run regardless of action. The routine should return false to continue, telling the player what has happened, or true to stop processing the action and produce no further output.

	article [OBJ] ~PUNY
	A string or a routine to print the indefinite article for the object name.The default article is "some" for objects that have pluralname, nothing for objects that have proper, and "a" for all others.

	before [OBJ] [ROOM] (+)
	Like after, but is run before the action happens. Returning true stops the default action from happening at all.

	cant_go [ROOM]
	A string or a routine to print a message, when the player tries to go in a direction where there's no exit.

	capacity [OBJ] ~PUNY
	The maximum number of items that can be in this container, on this supporter or held by this actor. To read the capacity of an object, taking the default capacity into consideration, you must call ObjectCapacity(object).

	d_to [ROOM]
	Holds a possible exit. The value can be any of:
	* false – not an exit * a room where the exits leads * a door object – the exit leads through this door * a string saying why the player can’t go there * a routine which either returns false, a room, a door object, or prints its own message and returns true.

	daemon [OBJ] [ROOM]
	A routine that is executed every turn once it is started. Use StartDaemon and StopDaemon to start/stop it.

	describe [OBJ] (+) ~PUNY
	A string or a routine to print a paragraph of text for an object in a room description. If it's a string or it's a routine which returns true, the object won't be further described. Not supported for rooms as in DM4. Note: Start and end the description with a newline ("^").

	description [OBJ] [ROOM]
	For an object: A string or a routine to print the text the player should get when examining the object. For a room: A string or a routine to print the room description.

	door_dir [OBJ] ~PUNY
	For a door: A direction (e.g. n_to) or a routine returning a direction. This says in which direction the door lies in location. If OPTIONAL_SIMPLE_DOORS is defined and found_in holds a list with two rooms, door_dir can be a list of two directions.

	door_to [OBJ] ~PUNY
	For a door: A room or a routine returning a room. This says where the door leads, when the player is in location. If OPTIONAL_SIMPLE_DOORS is defined and found_in holds a list with two rooms, door_to can be omitted.

	e_to [ROOM]
	An exit property. See d_to.

	each_turn [OBJ] [ROOM] (+)
	A routine which is executed every turn when the object is in scope.

	found_in [OBJ]
	A list of rooms where the object is present, or a routine which returns true if the object is present in location. If the object has absent, it's not present anywhere.

	grammar [OBJ]
	For animate or talkable objects: Called when object is spoken to. Can advance verb_wordnum. Return true if routine has parsed all input and set up action, noun and second. Return 'verb' to use this verb's grammar instead, or -'verb' to use this verb's grammar but fall back to the verb in player input if parsing fails. Return false to parse as usual.

	in_to [ROOM]
	An exit property. See d_to.

	initial [OBJ] [ROOM]
	For an object: A string or a routine to describe the object before it's been picked up. Note: For doors/containers and switchable objects, use when_open + when_closed and when_on + when_off respectively.
For a room: A string or a routine to print a text when the player enters the room.

	inside_description [OBJ]
	For an enterable object: A string or a routine that will printed/run when the player is in/on the object.

	invent [OBJ]
	A routine to print the object in a list (typically in player inventory or a room description). First the routine is called before the object name has been printed, with inventory_stage set to 1. Then it's called again when the object name has been printed but no additional information (e.g. "(providing light)"), with inventory_stage set to 2.
For both calls, the routine should return false to continue or true to stop all further output.

	life [OBJ] (+)
	For animate objects: Works like a before routine, but receives only person-to-person actions (Answer, Ask, Attack, Give, Kiss, Order, Show, Tell, ThrowAt, WakeOther). Can be a string instead of a routine.

	n_to [ROOM]
	An exit property. See d_to.

	name [OBJ] [ROOM]
	A list of dictionary words. For an object, these are the words that can be used to refer to the object. For a room, these are words which should yield a reply like "You don't need to refer to that.". For an object, but not a room, the name property can be overridden by the parse_name property.

	ne_to [ROOM]
	An exit property. See d_to. Requires OPTIONAL_FULL_DIRECTIONS to work.

	nw_to [ROOM]
	An exit property. See d_to. Requires OPTIONAL_FULL_DIRECTIONS to work.

	orders [OBJ]
	For animate or talkable objects: A routine to carry out the player's orders or decline to do so. The routine should either return false, or print a message and return true to stop further processing. The player object's orders routine is called first, and then the addressed object's orders routine is called.

	out_to [ROOM]
	An exit property. See d_to.

	parse_name [OBJ]
	A routine to parse player input and decide if it matches this object. The routine calls NextWord() and/or NextWordStopped() to read words and returns the number of words that match, 0 for no match or -1 to say it chooses not to decide (i.e. the name property will be consulted, if provided).

	react_after [OBJ]
	Like after, but receives all actions taking place when this object is in scope.

	react_before [OBJ]
	Like before, but receives all actions taking place when this object is in scope.

	s_to [ROOM]
	An exit property. See d_to.

	se_to [ROOM]
	An exit property. See d_to. Requires OPTIONAL_FULL_DIRECTIONS to work.

	short_name [OBJ]
	A string or routine to print the short name of the object, overriding the name provided in the object's name string. The routine should return true to signal that it has printed the name, or false to say that the library should still print the object's name string. Sometimes it's useful to print a prefix (e.g. an adjective) and return false.

	sw_to [ROOM]
	An exit property. See d_to. Requires OPTIONAL_FULL_DIRECTIONS to work.

	time_left [OBJ] [ROOM]
	For an object which has a time_out property: After StartTimer(object, turns) has been called, time_left holds the number of turns left before time_out will be called. For other objects/rooms: Use it as a general variable.

	time_out [OBJ] [ROOM] (+)
	A routine to be called when a timer times out. Start the countdown with StartTimer(object, turns).

	timer_order [OBJ] [ROOM] PUNY++
	A number that determines when this object’s timer/daemon executes relative to other timers/daemons. The lower the earlier. Objects that don’t provide it have the value 100. Requires OPTIONAL_ORDERED_TIMERS.

	u_to [ROOM]
	An exit property. See d_to.

	w_to [ROOM]
	An exit property. See d_to.

	when_closed [OBJ]
	For doors and containers: A string or routine to describe the object when it's closed.

	when_off [OBJ]
	For a switchable object: A string or routine to describe the object when it's off.

	when_on [OBJ]
	Like when_off, but for when it's on. Not used if the object has moved.

	when_open [OBJ]
	Like when_closed, but for when it's open. Not used if the object has moved.

	with_key [OBJ] ~PUNY
	For lockable objects: The object which works as a key, or a routine which returns true if the object held in second works as a key.

	About this document

