PunyInform Game Author’s Guide

Written by Fredrik Ramsberg and Hugo Labrande

Contents

1 Introduction 3
2 Testing & Debugging 4
2.1 Use the debug commands 4
2.2 Enable all error checking 4
2.3 Createacommandfile L. 5
2.4 Testers e e 5
3 Before release 6
3.1 CreateanIFID o 6
3.2 Set Release and Serial 6
3.3 Check limits 7
3.4 Checkarticles 7
35 Turnoff DEBUG, 8
3.6 Convert your Zcode file to HTML 8
4 Optimizations 9
4.1 Things that save hundreds of bytes 9
4.1.1 Use abbreviations properly 9
4.1.2 Omit unused routines 10
4.1.3 Turn off strict error checking 10
4.2 Things that save dozens of bytes 11
4.2.1 Use string constants 11
4.2.2 Replace a switch with anarray 11
4.2.3 Compare a value to multiple values 12
4.2.4 Use Simple Doors 12
4.2.5 Set RUNTIME_ERRORS to0 12
4.3 Things that save several bytes 13
4.3.1 Avoid conditions in mathematical expressions 13
4.3.2 Compare t0 Zero e 13
4.3.3 Use the random() statement 13

4.3.4 [Z3-specific] Use the low dictionary resolution to your
advantage oL L 13

4.4 Other optimizations 14

4.4.1
4.4.2
4.4.3
4.44

Use Manual Scope 14
Consider using Manual Scope Boost 15
Use manual setting of reactive attribute 15
Move arrays to static memory 15

Chapter 1

Introduction

This document is intended to provide some guidance as well as various tips and
tricks for anyone writing a PunyInform game.

The chapters Testing €& Debugging and Before Release are essential reading for
anyone who intends to release a PunyInform game.

The Optimizations chapter is for when you see the need to make the game smaller
and/or faster, typically because you want to make the game fit z3 limitations
and/or because you want to provide the best possible user experience.

Chapter 2
Testing & Debugging

Here are some advice on finding and fixing problems in your game.

2.1 Use the debug commands

PunyInform has a nifty set of commands to be used when debugging. Read the
docs on these commands at

https://github.com/johanberntsson/PunyInform/wiki/Manual#debugging

and make sure you try them out and understand how to use them. They can be
used to teleport to other locations, moving objects to your inventory, checking
what’s in scope and more. Whenever you're having trouble getting your code
to run in before, after etc, you can use Actions and/or Routines to figure out
which actions are triggered and which user-supplied routines are executed.

2.2 Enable all error checking

Inform 6 has the ability to check for a number of problems at runtime, using
Strict error checking mode. Strict error checking is enabled by default when
compiling to z5 or z8, but is not available at all for z3. Since it makes Inform
code both bigger and slower, we usually recommend game authors to disable it,
and this is done on the first line of the game template minimal.inf (“!1% -~S”).
When you’re looking for problems in your code, it’s often useful to enable strict
error checking (comment out that line) and compile as z5 or z8.

Also, PunyInform has a constant called RUNTIME_ERRORS. whenever you're
looking for problems in your code, set this to 2. This enables all checks for errors
and prints full information when a problem is detected. If you don’t define it, it
defaults to 2 when DEBUG is defined.

2.3 Create a command file

Consider saving a list of commands needed to play the game from start to finish.
When playing on a modern interpreter for a modern OS, you can type recording
on to start saving all commands to a file, and recording off to stop. To read a
command file and execute all commands in it, type replay. Note that you need
to define OPTIONAL_EXTENDED_METAVERBS in your game code to enable these
commands.

Having a command file like this makes it easy to check that it’s still possible to
win the game, whenever you have made changes. You can also save a transcript
of the game played with the command file, and then compare a playthrough
made at a later date to the original transcript to see what has changed - if you
broke something, this should make it fairly easy to spot. On Unix-like OSs you
can use diff to compare. On Windows you may want to install a specialized
program such as WinMerge.

2.4 Testers

Don’t think it’s enough that you test the game yourself. Good beta-testers are
invaluable in the process of producing a good game. They will try things you
never thought of, and help you find lots of little things and big things that need
to be fixed. You will also notice where they get stuck, so you can decide if
you want to provide more hints for the solution to some problem, provide an
alternate solution, or somehow make it easier.

Ask testers to provide transcripts of playing sessions so that you can easily see if
they interact with the game world as you expect. You can also see opportunities
to add or improve responses to non-essential actions.

If you don’t have any volunteers for testing, you can ask for help in some forum,
such as the one at https://intfiction.org/ .

And of course, make sure you give credit to your testers, as well as others who
have somehow helped out with your game.

Chapter 3

Before release

These are some tips you may find helpful when your game can be played from
beginning to end, and you feel it’s soon ready to be released to the public.

3.1 Create an IFID

There’s a standard for identifying text adventures, and it’s part of The Treaty
of Babel (See https://babel.ifarchive.org/). Each game gets an IFID - a unique
identifier which can be used to look up data about the game. It’s a good idea to
include an IFID in your PunyInform game. Somewhere in your source code, you
write a section like this:

Array UUID_ARRAY string "UUID://XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX//";
#Ifdef UUID_ARRAY;#Endif;

Instead of all the Xs you put your ungique identifier consisting of the characters
0-9 and A-F, which you obtain from https://www.tads.org/ifidgen/ifidgen .

The IFID remains the same when you release updated versions of your game. If
the game is ported to a new system (say from PunyInform to Twine or Inform
7), it gets a new IFID. Also, if the game is translated to another language (say
French), it gets a new IFID as well.

3.2 Set Release and Serial

When you start developing a game, you don’t need to set the Release number
and Serial number. They will get reasonable defaults. As you release a game,
you want to have control over these constants, as this helps identifying which
version of the game is available at a certain web site, or which version a certain
player is running when they encounter a bug. So, you add something like this
near the top of your source code file:

Release 1;
Serial "210131";

The recommended way to use the release number is to set it to 1 for the initial
release, then increase it by one for each new release you make. The serial number
is typically set to the date when the release is made, in the format YYMMDD.

3.3 Check limits

PunylInform has a number of limits which have been set to reasonable values,
but some games will need to raise some of these limits. Read about these limits
at

https://github.com/johanberntsson/PunyInform/wiki/Manual#parameters
The limits which you have to be particulary careful with are:

MAX_TIMERS (default 32): If there is any chance that there could be more
than 32 timers or daemons active at the same time, raise this limit. If, on the
other hand, you know that you only have say 3 daemons and no timers in your
game, you can set MAX_TIMERS to 3 to save a bit of dynamic memory. Also
search through any extensions you use to check that they’re not using timers or
daemons before you start lowering this limit.

MAX_SCOPE (default 50): How many objects can be in scope at the same
time. Imagine the player picking up all movable objects and placing them in
the location with the most static objects. Add any actors, their possessions,
the player’s body parts if any, etc. MAX__SCOPE should be higher than this
number of objects. If there’s a situation in the game where MAX_SCOPE is too
low for all objects that should be in scope, some objects will quietly be ignored,
meaning some objects can’t be referenced and if they have an each_ turn routine
it won’t be executed. If the game has been compiled in debug mode, an error
message is printed when this happens.

3.4 Check articles

PunyInform has a simple mechanism for printing the indefinite article of an
object:

1. If the object has the proper attribute, its name is a proper name (like
“John”) and it has no article.
2. If the object has the pluralname attribute, the article is “some”.

Wa”

3. Otherwise, the article is “a”.

This works well for most objects. However, sometimes you want to use a different
article, such as “an” or “a bunch of” (Of course “a bunch of” isn’t an article,
strictly speaking, but we can use it as one in PunyInform.). To do this, you add
the article property to the object, and give it a string or routine as its value.

As object names are more often printed with their definite article, it’s easy to
miss that some objects may have the wrong indefinite article. Before you release
your game, make sure you go through all your objects and check the articles. In
particular:

o Check that objects which start with a vowel sound (like airplane, egg and
umbrella but not unicorn) have article “an”.

e Check that plural objects either sound fine with the article “some”, or have
another article specified. L.e. trousers may have article “a pair of”, bees
may have article “a swarm of” etc.

If you want to see the article of an object in action, compile the game in debug
mode, purloin the object and check your inventory.

3.5 Turn off DEBUG

While the DEBUG mode is invaluable during development, make sure you turn
it off when compiling a game for release, or it will allow players to cheat, plus
it looks like a rather sloppy release. Note that when the game is compiled in
DEBUG mode, a “D” is printed after the library verion when the game starts,
like “PunyInform v4.4 D”.

Additionally, it’s generally advicable to set RUNTIME_ERRORS to 0 when making
a proper release. This means the library will keep quiet about problems it spots
which don’t make the game crash. This makes the game file smaller and stops
the library from breaking player immersion with complaints about programming
erTors.

3.6 Convert your Zcode file to HTML

The Parchment HTML Converter at https://iplayif.com/api/sitegen allows you
to convert Zcode to HTML, allowing players to play your game in a web browser.
This process can be automated using curl and its REST API from command
line, like this:

curl -o output.html -F "story_file=@mygame.z5" \
https://iplayif.com/api/sitegen

Chapter 4
Optimizations

PunyInform leaves you with about 100k bytes to write your game (if you're using
the z3 format), but sometimes it’s not enough. Maybe your ambitious game
“almost fits” in the z3 format; maybe you’d like your grand epic to be playable
on a single 1541 disk for the C64; maybe you could fit it all on a 130kb disk for
the Atari 8bit. But even if you don’t get in a situation where you have to make
optimizations, you may want to anyway - a shorter game will play smoother on
a machine with little memory, like most 8-bit computers. In any case, we’re here
to help! This chapter will give you some helpful tips and tricks to make your
game smaller. Depending on how much time and energy you can spend, you
could save up to an extra 10kb on your game file size!

4.1 Things that save hundreds of bytes

4.1.1 Use abbreviations properly

Abbreviations are fixed strings that get replaced by a 10-bit long code in order
to save space in the text. You just need to declare them, and the compiler will
apply them whenever possible, if you compile with the -e switch. A topic of
particular interest is which abbreviations to use.

Infocom used the full 96 abbreviations one can declare in the Z-machine. Puny-
Inform ships with 64 abbreviations, which have been picked based on the text
in the library files. This saves some space, but these generic abbreviations will
not capture the fact that your protagonist’s name, “Eyjafjallajokull”, could be
declared as abbreviated text. A good set of abbreviations is uniquely tailored
to your game. Inform’s compiler has a switch, —u, that looks at your game’s
text and finds 64 custom abbreviations; it usually gives better results. To have
Inform come up with the best set of abbreviations, compile the game with the
-u switch, and redirect output to a text file, like this:

inform6 +lib mygame.inf -v3u > abbreviations.txt

Then open the produced text file and scroll to the bottom. Copy all the lines at
the end of the file beginning with Abbreviate, and paste them at the beginning
of your source code file, right after the lines at the top with compiler directives.
As an alternative, you can put them in a separate file which you Include
in your main source code file. Also, make sure you have the line Constant
CUSTOM_ABBREVIATIONS; in your source, before including globals.h, or your new
abbreviations won’t be used.

Very recently, interest in the algorithmics of the problem have led to the creation
of tools to compute even better abbreviations. Henrik Asman’s program and
Matthew Russotto’s program aim to compute 96 abbreviations with efficient
implementations; a slightly less efficient program in Python is the one written
by Hugo Labrande. Both Asman’s and Labrande’s programs can output any
number of abbreviations in Inform’s expected format and can handle Inform
6’s newest gametext format, introduced in version 6.35. Currently PunyInform
requires version 6.36, so these program are useful for all PunyInform developers.

You can now declare up to 96 abbreviations (if you don’t declare any “low
strings” - that is, set the compiler switches MAX_ ABBREVS to 96 and
MAX_ DYNAMIC_STRINGS to 0), which saves even more space. You could
expect savings of up to 7kb on a 128kb file!

4.1.2 Omit unused routines

The Inform 6 compiler switch $OMIT_UNUSED_ ROUTINES is off by default,
but can be turned on by putting it in the compilation flags. This frees up
memory at no cost, and can save several hundred, maybe even thousands, of
bytes! This switch is set at the start of the file minimal.inf so if you base you
game on that file, you have this covered.

4.1.3 Turn off strict error checking

By default, the Inform compiler adds code to every z5 or z8 game to check for a
number of problems in your code at runtime. This is a useful and nice feature,
but it makes the game slower and ~10 KB larger, so you probably want to turn
it off when targeting 8-bit computers. You do this with -~S. This is done in the
first line in minimal.inf.

Just keep in mind that this mechanism exists, and if you get weird errors or
crashes you may want to enable it for testing. Note that you’ll need to compile
as zb or z8 for it to work.

10

https://github.com/heasm66/ZAbbrevMaker
https://gitlab.com/russotto/zilabbrs
https://github.com/hlabrand/retro-scripts
https://github.com/hlabrand/retro-scripts

4.2 Things that save dozens of bytes

4.2.1 Use string constants

If you have a string of over 10 characters repeated somewhere in your code, you
could declare that string to be a constant, then point every instance of it to the
constant instead. Something like

Constant MSG_LOOKS_DANGEROUS = "Going in that direction looks dangerous.";
Constant MSG_HAM " braised ham with mashed potatoes and green beans";

Object Pub "Pub"
with
description [;
"You’re in the pub. Dark doorways lead north and west.
On the menu today:", (string) MSG_HAM, ".";

1,
before [;
OrderFood:
"You decide to order the", (string) MSG_HAM,
". Yummy, that was delicious!";
1,

n_to MSG_LOOKS_DANGEROUS,
w_to MSG_LOOKS_DANGEROUS,
s_to Street,

has light;

Depending on the size of the text fragment that’s repeated, you could save
anywhere from a few bytes to a few hundred bytes. Using this technique
repeatedly can yield savings of a few kilobytes in a long game, at the expense of
making your code a bit less readable; just make sure you use explicit constant
names.

One useful trick to identify such fragments quickly is to export the game’s text
into a file (-r switch in I6’s compiler), then sort the lines alphabetically. You
might then be able to identify identical strings, or strings whose beginning have
a lot in common (which is great: all things being equal, replacing a prefix or
a suffix by a constant is slightly better than replacing text in the middle of a
string, since that’s 2 print opcodes vs 3). You can also tweak your text so very
similar sentences end up being the same (“There is no power on the island” vs
“There isn’t any electricity on the island”).

4.2.2 Replace a switch with an array

If you have a large conditional switch statement for which the consequences are
of the same format (they’re all a print, or adding something to the same variable,

11

etc), you can turn this into a simple table lookup. Construct an array with the
changing values, and use a—>var to access them. So instead of:

switch(i){
1: print "We are the champions";
2: print "We will rock you";

use this:

Array songs "We are the champions" "We will rock you"
print (string) songs-->i;

This is the opposite of the advice under 2b in section 45 of the DM4, but that
example is for when you want to save on readable memory (which can be no
more than 64 KB) by not declaring too many arrays, and you're willing to pay
the cost to transform it into a routine.

4.2.3 Compare a value to multiple values

When writing complicated conditions featuring comparing one variable to multi-
ple things (dictionary word, in the case of a parse_name, for instance), always
group these comparisons using ‘or’, as follows:

if w==’sea’ or ’ocean’ or ’atlantic’ or

The Z-machine has an opcode to perform such comparisons by groups of three,
which the Inform compiler utilizes to generate shorter code.

4.2.4 Use Simple Doors

If you’re using more than four doors, you can save space by using
OPTIONAL_SIMPLE_DOORS. As a bonus, the code gets shorter and more legible.
Read more at https://github.com/johanberntsson/PunyInform/wiki/Manual#doors

4.2.5 Set RUNTIME__ERRORS to 0
RUNTIME__ERRORS has three settings:

e 0: Perform a bare minimum of error checking. If there’s a problem, just
print the error number.

e 1. Perform full error checks. If there’s a problem, just print the error
number.

e 2: Perform full error checks. If there’s a problem, print a suitable error
message.

When compiling with DEBUG enabled, setting 2 is the default. When DEBUG
isn’t enabled, setting 1 is the default.

In a production build, when the code has been thoroughly tested, you may want
to set RUNTIME__ERRORS to 0. This helps make the game file smaller, and

12

the reduced checks also make it faster. If you still want all error checks, but skip
the explanatory error messages, you can set it to 1.

4.3 Things that save several bytes

4.3.1 Avoid conditions in mathematical expressions

Inform has support for evaluating conditions as part of a mathematical ex-
pression, as in return (Lamp has light); or danger = (child(elevator)
~= 0). However, this requires Inform to generate some complex code, so try not
to use it - Write explicit if statements instead.

return (player == werewolf);
will not be as space-efficient as

if (player == werewolf) {
return true;

} else {
return false;

}

4.3.2 Compare to zero

The Z-Machine has an opcode for “test if zero” or “test if non-zero”. If you know
that a variable is either true (== 1) or false (== 0), it’s faster and shorter to
compare the variable to false than to true. So instead of:

if(x == true) print "The squirrel is happy".;
use:

if(x ~= false) print "The squirrel is happy".;
or just:

if(x) print "The squirrel is happy".;

4.3.3 Use the random() statement

If you want to print a text at random, or return a value at random, don’t forget
that the random() statement can take any number of arguments and return
one of them with equal probability. No need for a switch or an if to simulate a
weighted dice: random(1,2,3,4,6,6) will give you the value you need.

4.3.4 [Z3-specific] Use the low dictionary resolution to your
advantage

The z3 format has a resolution of 6 characters; that is, every single word is
identified by its first 6 characters. The compiler will replace every word with

13

the suitable dictionary value, which means
if(w == ’insect’ or ’insects’)

literally tests the same thing twice. Remove any useless test to save a few bytes
every time. This could also help with fitting everything in a “name” property,
instead of having to write a “parse_name” routine, which is costly.

4.4 Other optimizations

4.4.1 Use Manual Scope

This is an optimization for speed only. “Scope” means which objects the player,
or another actor, can refer to. By default, the PunyInform library will assume
that what’s in scope changes whenever a user-supplied routine is called, and this
may happen a lot. This causes the library to recalculate the scope quite often,
and this makes the game slower, particularly in situations where a lot of objects
are in scope.

If you want to improve on this situation, you can define the constant
OPTIONAL_MANUAL_SCOPE. This means you take responsibility for telling the
library when you have done something that might affect the scope. As a general
rule, set scope_modified to true whenever you use move or remove or you
change any of the attributes open, transparent or light. However, if the
object affected is nowhere near the player you don’t need to set scope_modified.
All library routines that move the player or move or modify objects, like
OpenSub() and PlayerTo(), already set scope_modified as needed.

If you don’t want to worry about manual scope while programming,
you can just wait until you’re ready to release the game, add Constant
OPTIONAL_MANUAL_SCOPE; at the beginning of your program, then search for
move, remove and give in your code and add scope_modified = true; as
appropriate.

Example of code that needs scope_modified = true:

Constant OPTIONAL_MANUAL_SCOPE;

Object Button "button"
with
name ’button’,
after [;
Push:
move Puppy to location;
remove self;
scope_modified = true;
"A loud click is heard, a puppy comes running into the room,
and the button sinks into the table, becoming invisible.";

14

1,

has static;

4.4.2 Consider using Manual Scope Boost

This is another optimization for speed. In short, you define OPTIONAL_MANUAL_SCOPE_BOOST
and the library tries to avoid looking for react_before, react_after and
each_turn routines to run, when there weren’t any routines of a certain

type last turn, and what’s in scope hasn’t changed since then. See the full
documentation for this feature at:

https://github.com/johanberntsson/PunyInform /wiki/Manual#manual-scope-
boost

4.4.3 Use manual setting of reactive attribute

This is an optimization you can perform to make your game start faster. Unless
you have done this, PunyInform will look through all your objects when the game
starts, and set the reactive attribute on all objects that provide react_before,
react_after or each_turn. When the game is running, only objects that have
this attribute are considered when checking for these properties, for reasons of
speed. While letting the library set this attributes automatically works well, it
means there’s an extra pause as the game starts. For a large game, this could
take a few seconds on an 8-bit computer.

These are the steps you need to take to set the attribute manually instead:

1. Define the constant OPTIONAL_MANUAL_REACTIVE

2. Compile the game in Debug mode, start it and type the command “DEBUG
REACTIVE”

3. For every object which is reported as needing the reactive attribute, add
the attribute in the source code for that object. Typically, you can skip it
for the player object, unless you have added an each_ turn routine to it.

Note: If you use parse_name quite sparingly (up to about 10% of all objects the
player can refer to), you probably want to define OPTIONAL_REACTIVE_PARSE_NAME
as well. If you do this, and you define OPTIONAL_MANUAL_REACTIVE, you will also
need to set the reactive attribute for all objects that provide the parse_name

property.

4.4.4 Move arrays to static memory

If you have arrays whose contents never change, you can place them in static
memory, like this:

Array my_array static --> 1 2 3 4 5 "Stringl" "String2";

This makes dynamic memory smaller, which means save and restore get faster.
Since static memory can also be swapped out, it means gameplay can be smoother

15

in sections of the game where the arrays aren’t used.

16

	Introduction
	Testing & Debugging
	Use the debug commands
	Enable all error checking
	Create a command file
	Testers

	Before release
	Create an IFID
	Set Release and Serial
	Check limits
	Check articles
	Turn off DEBUG
	Convert your Zcode file to HTML

	Optimizations
	Things that save hundreds of bytes
	Use abbreviations properly
	Omit unused routines
	Turn off strict error checking

	Things that save dozens of bytes
	Use string constants
	Replace a switch with an array
	Compare a value to multiple values
	Use Simple Doors
	Set RUNTIME_ERRORS to 0

	Things that save several bytes
	Avoid conditions in mathematical expressions
	Compare to zero
	Use the random() statement
	[Z3-specific] Use the low dictionary resolution to your advantage

	Other optimizations
	Use Manual Scope
	Consider using Manual Scope Boost
	Use manual setting of reactive attribute
	Move arrays to static memory

